1 |
Hemocytes and neural injury in freshwater crayfish : Does the melanization reaction matter?Gustafsson, Amanda January 2022 (has links)
Neurogenesis primarily occurs during embryonic development in decapod crustaceans, ending when the embryonic precursor cells die. However, areas in the central olfactory pathway are exceptions to this. Here, neurons are produced throughout the animal’s life from precursor cells in the neurogenic niche. Cells within the niche divide and migrate to clusters in the olfactory pathway where they eventually differentiate into neurons. The number of cells in the niche correlates with the total number of hemocytes, which have been suggested to be a source of adult-born neurons. Hemocytes are further an important part of the innate immunity since containing the compounds of the proPO-system needed for the melanization reaction. The purpose of this study was to find out whether the melanization reaction matters when it comes to neural injuries. Neural injury was induced by cutting of the first pair of antennae, where neurons are connected to the olfactory pathway. Hemocytes in the hemolymph were counted and characterized and phenoloxidase activity in the brain was measured before and after neural injury. mRNA expression was measured for prophenoloxidase, the neurogenic niche marker glutamine synthetase 2 as well as for astakine 1. Astakine 1 protein had been found in increased levels after neural injury in previous studies. Significant differences were detected for number of hemocytes in injured crayfish and for glutamine synthetase 2 and prophenoloxidase in control crayfish. However, these findings did not provide strong enough evidence to suggest that the melanization reaction plays a role after neural injury. More research is still needed, perhaps by studying the distribution of hemocytes in the brain at different times post-injury by histological sectioning.
|
2 |
Analysis of Mitochondrial Signaling in the Regulation of Programmed Cell DeathHui, Kelvin Kai-Wan 31 August 2011 (has links)
The involvement of mitochondrial signaling in mammalian PCD regulation has been examined extensively via biochemical analyses and cellular studies in vitro. However there still exist considerable gaps in our knowledge regarding its contribution in specific tissues and cell types during mammalian development in vivo. In addition, given the numerous pathologic conditions associated with aberrant PCD, modulation of this signaling process represents an attractive target for therapeutic intervention. In this thesis I have therefore examined the regulation of mitochondrion-mediated PCD signaling as it pertains to several forms of developmental and injury-induced cell death.
In the first component of the thesis I have examined the differential sensitivity of Bcl2 on the survival of motor neuron populations from two distinct developmental origins (alpha and gamma motor neurons), demonstrating that gamma motor neurons are preferentially affected in Bcl2 null mice. Thus, Bcl-2 plays a critical in vivo in regulating subtype-specific motor neuron survival during development. In the second study I have demonstrated that a major portion of the neuroprotective effect exerted by the immunophilins cyclosporin A and FK-506 are mediated through calcineurin signaling; rather than MOMP-mediated events as previously held. Additional findings of this study demonstrated the first neuroprotective effects of the pyrethroid insecticide cypermethrin and calcineurin-mediated control of Bad phosphorylation. Such findings establish a link between calcineurin signaling and mitochondrion-mediated cell survival.
The above studies established critical features of mitochondrion-mediated PCD in regulating survival of several neuronal subpopulations. I therefore followed these studies with an examination of how post-mitochondrial PCD signaling is regulated following MOMP permeabilization. Specifically I examined regulation of the Smac-IAP-caspase axis, investigating how combinatorial deletion of Casp3 and Diablo alter PCD progression in mouse embryonic fibroblasts. Using a series of injury stimuli in the context of biochemical and cellular analyses I have developed a model of how endogenous Smac/DIABLO regulates executioner caspase activity. Collectively these studies elucidate key aspects of mitochondrial signaling during both developmental and injury-induced PCD in vivo.
|
3 |
Analysis of Mitochondrial Signaling in the Regulation of Programmed Cell DeathHui, Kelvin Kai-Wan 31 August 2011 (has links)
The involvement of mitochondrial signaling in mammalian PCD regulation has been examined extensively via biochemical analyses and cellular studies in vitro. However there still exist considerable gaps in our knowledge regarding its contribution in specific tissues and cell types during mammalian development in vivo. In addition, given the numerous pathologic conditions associated with aberrant PCD, modulation of this signaling process represents an attractive target for therapeutic intervention. In this thesis I have therefore examined the regulation of mitochondrion-mediated PCD signaling as it pertains to several forms of developmental and injury-induced cell death.
In the first component of the thesis I have examined the differential sensitivity of Bcl2 on the survival of motor neuron populations from two distinct developmental origins (alpha and gamma motor neurons), demonstrating that gamma motor neurons are preferentially affected in Bcl2 null mice. Thus, Bcl-2 plays a critical in vivo in regulating subtype-specific motor neuron survival during development. In the second study I have demonstrated that a major portion of the neuroprotective effect exerted by the immunophilins cyclosporin A and FK-506 are mediated through calcineurin signaling; rather than MOMP-mediated events as previously held. Additional findings of this study demonstrated the first neuroprotective effects of the pyrethroid insecticide cypermethrin and calcineurin-mediated control of Bad phosphorylation. Such findings establish a link between calcineurin signaling and mitochondrion-mediated cell survival.
The above studies established critical features of mitochondrion-mediated PCD in regulating survival of several neuronal subpopulations. I therefore followed these studies with an examination of how post-mitochondrial PCD signaling is regulated following MOMP permeabilization. Specifically I examined regulation of the Smac-IAP-caspase axis, investigating how combinatorial deletion of Casp3 and Diablo alter PCD progression in mouse embryonic fibroblasts. Using a series of injury stimuli in the context of biochemical and cellular analyses I have developed a model of how endogenous Smac/DIABLO regulates executioner caspase activity. Collectively these studies elucidate key aspects of mitochondrial signaling during both developmental and injury-induced PCD in vivo.
|
Page generated in 0.0268 seconds