• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 152
  • 47
  • 37
  • 11
  • 9
  • 5
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 362
  • 190
  • 168
  • 44
  • 43
  • 43
  • 37
  • 37
  • 36
  • 36
  • 35
  • 33
  • 30
  • 30
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Liquid-Liquid Phase Separation as a Modulator of Pathological Aggregation of Tau

Boyko, Solomiia 26 May 2023 (has links)
No description available.
152

INVESTIGATION OF ARSENIC (AS) AND LEAD (PB) MIXTURE DEVELOPMENTAL TOXICITY

Keturah Gayle Kiper (12789119) 27 July 2023 (has links)
<p>   </p> <p>Environmental toxicants such arsenic (As) and lead (Pb) are chemicals that enter the environment and can result in adverse health effects humans, especially during development. This dissertation work evaluated As and Pb to determine if developmental toxicity significantly changes at lethal and sub-lethal mixture concentrations using the zebrafish model. Joint action models were applied to survival data to determine the type of interaction. Metal exposures were from 1-120 hours post fertilization (hpf). As concentrations were 0-7,500 ppb. Pb concentrations were 0–100,000 ppb. The LC25, LC50, and LC75 values at 120 hpf from single metal exposures were used to select mixture concentrations for modeling. The survival data indicated an additive effect occurred at lethal concentrations. </p> <p>The impact of the mixture on behavior, morphology, and gene expression was then evaluated at sub-lethal concentrations of 10 and 100 ppb As and Pb individually or in mixtures. Data was analyzed with a repeated measures ANOVA (behavior) or an ANOVA (morphology and qPCR) with the least significant difference test (α=0.05). Zebrafish larvae exposed to 10 ppb As exhibited hyperactivity in all dark phases for the distance moved, time moving, and velocity, while those exposed to 10 ppb Pb only showed an increase in distance moved and velocity in the first dark phase. The 10 ppb mixture was found to have an intermediate impact with increased time moving in all dark phases and increased distance moved and velocity only in the first dark phase. In contrast, hyperactivity was observed only in the 100 ppb As and 100 ppb mixture treatment in the last two dark phases for time spent moving. No significant behavioral alterations occurred in the 100 ppb Pb treatment. A decrease in mean brain length and brain length ratio to the total length in the 10 ppb mixture was observed with no significant morphology changes observed for head length, head width, or total length. Alternatively, measurements of cerebral vasculature morphology in the mesencephalon (midbrain) and cerebellum (hindbrain) uncovered decreased total vascularization at 72 hpf (exposure 1-72 hpf) in both brain regions. This decrease occurred in all treatment groups in the mesencephalon and in all treatment groups, except the 100 ppb Pb and 10 ppb As treatment groups in the cerebellum. In addition, decreased sprouting and branching occurred in the mesencephalon, while only decreased branching was measured in the cerebellum. The 10 ppb Pb treatment group showed unique perturbations in several cerebral vasculature endpoints evaluated, which was also observed in a specific gene expression alteration pattern different from the other treatment groups. To identify molecular changes associated with these changes, expression of genes related to angiogenesis and vasculogenesis (i.e., <em>vegfaa, wnt7aa,</em> and<em> lrp1aa</em>) and genes associated with tight junctions (i.e., <em>cldn5a</em> and <em>cldn5b</em>) were assessed at 72 hpf. Increased <em>cldn5b</em> expression was detected in all treatment groups, while <em>cldn5a </em>was increased in only the 10 ppb Pb treatment group. In addition, <em>wnt7aa</em> was only decreased in the 10 ppb Pb treatment group. Alternatively, <em>vegfaa</em> was increased in the 100 ppb As and 100 ppb mixture treatment groups and no changes were detected for <em>lrp1aa</em>. In summary, cerebral vascular toxicity outcomes in the 10 ppb mixture treatment were primarily driven by changes in the 10 ppb Pb treatment group, while perturbations in the 100 ppb mixture treatment group aligned with the 100 ppb As alterations. In addition, the non-linear dose response for 10 and 100 ppb Pb treatment groups agree with observations in prior studies. qPCR results indicate that both metals together and separately alter cerebral vasculature development at environmental regulatory levels. </p> <p>Lastly, with the increase in the prevalence of neurodegenerative diseases increasing globally, there is a need to evaluate more therapeutics at a high through-put pace and to pinpoint the cause of the sporadic cases. CRISPR-Cas9 technology offers a relatively inexpensive, reliable, and precise advantages over its predecessors when it comes to producing mutant disease models of neurodegeneration. A method to create the expression vector needed for creation of a CRISPR Cas9 knock-in model is detailed in this dissertation. The methodology to insert a chimeric DNA sequence contain human DNA has been created, and the <em>in silico</em> assays used to produce the reactant for this methodology were successful. It has been determined that the efficiency of this knock-in method is limited to the success of producing the chimeric model which is limited itself by the number of molecules included into the chimeric sequence. Overall, the results show that the overlap primers designed in silico need to be re-designed to improve efficiency of the initial reactions required to produce the first plasmid containing the required machinery for a successful knock in of exogenous human DNA.</p>
153

The Role of Circadian Timing Desynchrony During Alzheimer’s Disease Pathogenesis

Kalidindi, Anisha 07 September 2022 (has links)
No description available.
154

Defective Dynamics Of Mitochondria In Amyotrophic Lateral Sclerosis And Huntington's Disease

Song, Wenjun 01 January 2012 (has links)
Mitochondria play important roles in neuronal function and survival, including ATP production, Ca2+ buffering, and apoptosis. Mitochondrial dysfunction is a common event in the pathogenesis of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD); however, what causes the mitochondrial dysfunction remains unclear. Mitochondrial fission is mediated by dynamin-related protein 1 (DRP1) and fusion by mitofusin 1/2 (MFN1/2) and optic atrophy 1 (OPA1), which are essential for mitochondrial function. Mutations in the mitochondrial fission and fusion machinery lead to neurodegeneration. Thus, whether defective mitochondrial dynamics participates in ALS and HD requires further investigation. ALS is a fatal neurodegenerative disease characterized by upper and lower motor neuron loss. Mutations in Cu/Zn superoxide dismutase (SOD1) cause the most common familiar form of ALS by mechanisms not fully understood. Here, a new motor neuron-astrocyte coculture system was created and live-cell imaging was used to evaluate mitochondrial dynamics. Excessive mitochondrial fission was observed in mutant SOD1G93A motor neurons, correlating with impaired axonal transport and neuronal cell death. Inhibition of mitochondrial fission restored mitochondrial dynamics and protected neurons against SOD1G93A -induced mitochondrial fragmentation and neuronal cell death, implicating defects in mitochondrial dynamics in ALS pathogenesis. iv HD is an inherited neurodegenerative disorder caused by glutamine (Q) expansion in the polyQ region of the huntingtin (HTT) protein. In the current work, mutant HTT caused mitochondrial fragmentation in a polyQ-dependent manner in both primary cortical neurons and fibroblasts from human patients. An abnormal interaction between DRP1 and HTT was observed in mutant HTT mice and inhibition of mitochondrial fission or promotion of mitochondrial fusion restored mitochondrial dynamics and protected neurons against mutant HTT-induced cell death. Thus, mutant HTT may increase mitochondrial fission by elevating DRP1 GTPase activity, suggesting that mitochondrial dynamics plays a causal role in HD. In summary, rebalanced mitochondrial fission and fusion rescues neuronal cell death in ALS and HD, suggesting that mitochondrial dynamics could be the molecular mechanism underlying these diseases. Furthermore, DRP1 might be a therapeutic target to delay or prevent neurodegeneration.
155

Identification and Functional Characterization of the Zebrafish Gene Quetschkommode (que)

Friedrich, Timo 01 September 2012 (has links)
Locomotion in vertebrates depends on proper formation and maintenance of neuronal networks in the hind-brain and spinal cord. Malformation or loss of factors required for proper maintenance of these networks can lead to severe neurodegenerative diseases limiting or preventing locomotion. A powerful tool to investigate the genetic and cellular requirements for development and/or maintenance of these networks is a collection of zebrafish mutants with defects in motility. The zebrafish mutant quetschkommode (que) harbors a previously unknown gene defect leading to abnormal locomotor behavior. Here I show that the que mutants display a seizure-like behavior starting around four days post fertilization (dpf) that is characterized by a lack of an initial high amplitude body bend (C-bend) and simultaneous contra-lateral contractions leading to a seizure-like phenotype and paralysis. Peripheral nerve recordings show a significant increase in the number of initiated swimming bouts and overlap between left and right motor neuron activity. These data suggest that the que mutation leads to defects in nervous system function, at the level of motor neurons or central control of motor neurons. I have genetically mapped the que locus to a 0.36cM interval on chromosome 22 using meiotic mapping. I identified a splice mutation in the gene `dihydrolipoamide branched-chain transacylase E2' (dbt) as defective in que mutants. An orthologous mutation in humans lead to Maple Syrup Urine Disease (MSUD), a devastating metabolic disorder leading to seizures, mental retardation, coma and neonatal death if untreated. In zebrafish, dbt is expressed throughout early development and dbt transcripts become enriched in the hind-brain as well as in the gut and liver by 96 hpf. In MSUD patients levels of branched chain amino acids (BCAA) and their keto acids are significantly increased due to the essential role of the dbt enzyme for the BCAA metabolic pathway. The que mutation causes a significant increase of branched chain amino acids in the zebrafish mutant and a strong decrease of neurotransmitters such as glutamate and GABA as well as precursors like glutamine. I hypothesize that reduced neurotransmitter levels in que lead to the observed motility phenotype. Consistent with this hypothesis, I show a tissue specific reduction of glutamate in the hind-brain and spinal cord of que mutants. To evaluate the que mutant's potential as a vertebrate model for MSUD I performed a pilot drug screen using a selection of metabolites of the pathway as well as diet additives currently evaluated in clinical trials. Conversely, application of phenylbutyrate, one of the diet additives, had a beneficial influence on swimming abilities of que mutant embryos, while the keto acid α-ketoisocaproate (KIC), one of the elevated keto acids in human patients, decreased the percentage of larvae capable of swimming. These results help establish the zebrafish que mutant as a new model for MSUD disease that can be used to further the understanding of this disorder and to help identify therapeutic agents.
156

Pleiotropic effect of MATR3 in pluripotent stem cells

Pollini, Daniele 15 October 2020 (has links)
Matrin3 (MATR3) is an RNA binding protein involved in many roles in the nucleus, such as chromatin architecture and gene expression regulation, modulating transcriptional and post-transcriptional processes as RNA splicing and mRNA stabilization. Nevertheless, some functions of MATR3 within the cells are not entirely clear. MATR3 has been associated with Amyotrophic Lateral Sclerosis (ALS), a neurodegenerative disease that damages motor neuron (MN) cells and leads to progressive muscle paralysis and respiratory failure. A better understanding of MATR3 activity within cell physiology could represent an essential breakthrough for studying MATR3-associated pathologies. Using MATR3-silenced human pluripotent stem cell (hiPSC) line model, we collected data on the MATR3 role in the pluripotency and in the neural induction and differentiation. We found that the downregulation of MATR3 alters the expression level of crucial self-renewal factors such as OCT4, NANOG, KLF4, and LIN28A. We observed MATR3 acts at multiple levels of the gene expression, i.e. regulating YTHDF1 expression, and in RNA metabolism, having a role in mRNA stabilization and translation. The reduction of stemness potential caused by MATR3 downregulation creates a defect during the neurodifferentiation process, which does not arrest motor neurons formation but induces selective alterations that may affect motor neurons functionality. Indeed, several morphological and molecular abnormalities were observed during the neuronal differentiation, such as the alterations of the formation of neuroepithelial rosettes that arise in a reduction of neurite lengths and arborization in neuronal cells. On this basis, we investigated neuronal differentiation in the brain organoids grown from iPSCs derived from ALS patients fibroblasts. We show, for the first time, that MATR3 is a critical factor in orchestrating the stemness network through transcriptional, post-transcriptional, and translational regulation, therefore affecting the differentiation of mature neurons.
157

PGC-1s in the Spotlight with Parkinson’s Disease

Piccinin, Elena, Sardanelli, Anna Maria, Seibel, Peter, Moschetta, Antonio, Cocco, Tiziana, Villani, Gaetano 19 December 2023 (has links)
Parkinson’s disease is one of the most common neurodegenerative disorders worldwide, characterized by a progressive loss of dopaminergic neurons mainly localized in the substantia nigra pars compacta. In recent years, the detailed analyses of both genetic and idiopathic forms of the disease have led to a better understanding of the molecular and cellular pathways involved in PD, pointing to the centrality of mitochondrial dysfunctions in the pathogenic process. Failure of mitochondrial quality control is now considered a hallmark of the disease. The peroxisome proliferator-activated receptor gamma coactivator 1 (PGC-1) family acts as a master regulator of mitochondrial biogenesis. Therefore, keeping PGC-1 level in a proper range is fundamental to guarantee functional neurons. Here we review the major findings that tightly bond PD and PGC-1s, raising important points that might lead to future investigations.
158

Impact of the Mediterranean-DASH intervention for neurodegenerative delay (MIND) diet on cerebral arteriosclerosis and neurodegenerative diseases

Ani, Jeeda 26 January 2024 (has links)
In the field of gerontology, there is a question regarding whether certain diseases can accelerate the progression of other diseases. Given that there is no existing cure for dementia, there is an undeniable upsurge in demand for research concerning identifying preventive measures that influence the onset or development of cognitive decline. Cerebral atherosclerosis is characterized by the thickening of artery walls within the brain. Many studies have shifted their focus on examining the role nutrients and food play in preventing cognitive decline, dementia, cerebral atherosclerosis, and Alzheimer’s disease (AD). This thesis provides a comprehensive overview of existing observational and clinical trial evidence published up to date for the association of dietary intervention between cognitive health, dementia, AD, and cerebral atherosclerosis.
159

Editorial: Obesogenic Environmental Conditions Affect Neurodevelopment and Neurodegeneration

Pacheco-López, Gustavo, Pérez-Morales, Marcel, Guzmán-Ramos, Kioko Rubí, Figueroa, Johnny Davis, Krügel, Ute, Bravo, Javier A. 28 March 2023 (has links)
Editorial on the Research Topic. Obesogenic Environmental Conditions Affect Neurodevelopment and Neurodegeneration
160

Investigation of mRNA oxidation in Alzheimer's disease

Shan, Xiu 14 July 2005 (has links)
No description available.

Page generated in 0.236 seconds