• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 72
  • 24
  • 15
  • 13
  • 9
  • 5
  • 2
  • 1
  • Tagged with
  • 168
  • 28
  • 22
  • 19
  • 19
  • 18
  • 16
  • 16
  • 15
  • 15
  • 15
  • 14
  • 14
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Objective Image Analysis of Astroglial Morphology in Rstudio Following Systemic Activation in Postnatal Development

Blackburn, Jessica Ann January 2019 (has links)
No description available.
52

Neurodevelopmental Pathways to Depression in Adolescence: Socioeconomic Status, Cortical Structure, and Depression Symptoms

Nielsen, Johanna, 0000-0002-6386-7678 January 2021 (has links)
Socioeconomic status (SES) is a key predictor of a multitude of health and functional outcomes, and growing up in low SES contexts is associated with poor neurocognitive outcomes and mental health problems across the lifespan. Recent studies of the links between SES and brain development suggest that associations between low SES and poor neurocognitive and health outcomes are likely accounted for by impacts on neurodevelopment. Low SES is associated with structural brain development, including reduced cortical thickness in frontal regions relevant to higher-level cognitive functions. However, understanding of how the impacts of SES on neurodevelopment contribute to developing psychopathology is limited. The study of how neurodevelopmental processes may contribute to depression is of particular interest given numerous neural correlates of depression, including reduced cortical thickness in frontal regions. Whereas both SES and depression independently have demonstrated associations with grey matter maturation, no studies to date have examined how the associations between SES, depression, and cortical structure interrelate. The current study addresses this gap in the literature by examining associations between SES at both household and neighborhood levels, depression symptoms, and cortical structure in adolescence. Furthermore, exploratory analyses investigated specific pathways of SES effects on depression symptoms and cortical structure through exposure to psychosocial stress. Data were drawn from an ongoing prospective longitudinal study of reward function development. Participants included 232 youth ages 9-13 (57.03% female; 46.59% White, 39.36% African American, 11.24% Multiracial, 2.81% Other; 11.24% Hispanic) and their primary caregivers who completed assessments of depression symptoms and stress at baseline and a 9-month follow-up, as well as an MRI assessment between baseline and follow up. Regression analyses examined associations between 1) SES to cortical structure, 2) SES to depression symptoms, 3) baseline depression symptoms and cortical structure, and 4) cortical structure to depression symptoms at follow-up. Structural equation models examined indirect effects of 1) SES on depression symptoms through cortical structure, 2) SES on cortical structure through depression symptoms, and 3) SES on cortical structure and depression symptoms through experiences of psychosocial stress. Neighborhood SES was positively associated with mean cortical thickness, and household SES was inversely associated with depression symptoms at follow up, controlling for baseline symptoms. No indirect effects were identified. Findings suggest that different aspects of SES may confer unique risks for neural and psychosocial development in early adolescence, such that SES of the neighborhood appears to have global effects on neurodevelopment that are not mediated by mood or proximal stress, whereas SES of the household appears to be associated with increasing mood symptoms and heightened stress experiences in early adolescence. / Psychology
53

IDENTIFYING NEEDS IN THE MATH CLASSROOM: UNDERSTANDING THE EFFECTS OF ADVERSE CHILDHOOD EVENTS

DEVRIES, KATHRYN, 0000-0002-6333-1814 January 2022 (has links)
Two of every three students in the classroom today are affected by at least one adverse childhood experience (ACE; Perfect et al., 2016). Recently, researchers have used a neurodevelopmental approach to try to categorize and describe the connection between the neurological, cognitive, and academic success of children with ACEs and may have discovered a unique connection to math (Blodgett & Lanigan, 2018). The culmination of this research suggests that children who experience ACEs develop a stress physiology (as evidenced by differences in brain volume and cortisol levels) and this affects executive functioning. Because executive functioning, which is undergirded by the structural development of the brain (De Bellis et al., 2016), is related to mathematical academic achievement (Clark et al., 2010), children who have structural differences due to ACEs are hypothesized to have unique challenges in math. This study examined children drawn from an academic (rather than clinical) setting using behavioral measures of executive functioning as well as math grades obtained from their schools. Results suggest that for children drawn from a traditional academic setting, having been exposed to ACEs does not predict significant differences in EF skills or in school performance in math. Though the sample demonstrated a typical prevalence of exposure to ACEs, the maternal education of the children in the sample (a proxy for SES) was distinctly high. The interaction of these two aspects of this sample and their implications for the findings is discussed. / Educational Psychology
54

Role of Synapsin II in Neurodevelopment: Delineating the Role of Developmental Medial Prefrontal Cortical Synapsin II Reductions in the Pathophysiology of Schizophrenia

Tan, Mattea 11 1900 (has links)
Synapsins are primarily neuron-specific proteins critical for neurotransmission, synaptogenesis and synapse maintenance. Synapsin II has been specifically linked with increased susceptibility towards developing schizophrenia. Reduced synapsin II mRNA levels were found in the dorsolateral prefrontal cortex (PFC) of patients with schizophrenia. Moreover, synapsin II knockdown in the medial PFC (mPFC) of the adult rat was previously shown to cause schizophrenia-like behaviour and altered expression levels of vesicular proteins involved in glutamatergic and GABAergic signaling within the mPFC. The study of schizophrenia in recent years has shifted to focus on neurodevelopmental players which influence disease outcome. This study was designed to establish the link between neurodevelopmental dysregulation of synapsin II and schizophrenia. Specific knockdown of synapsin II was performed in the mPFC at postnatal day (PD) 7 and PD 17-23. Schizophrenia-like behavioural abnormalities were assessed at pre-pubertal (PD 32-35) and post-pubertal (PD 65-70) stages. Protein estimation of vesicular transporters involved in glutamate, GABA, and dopamine neurotransmitter systems were also assessed in the mPFC. Results from this study indicate (1) synapsin II knockdown during PD 17-23, but not PD 7, caused lasting schizophrenia-like abnormalities (2) abnormalities exhibited permanence at pre-pubertal and post-pubertal stages, and manifested as a function of brain development, (3) behavioural abnormalities were reminiscent of symptoms in established animal models of schizophrenia (i.e. deficits in prepulse inhibition, social withdrawal, locomotor hyperactivity), (4) neurodevelopmental synapsin II alterations induced hypoactive glutamatergic activity through decreased synapsin IIa expression levels (pre-pubertal) and decreased VGLUT-2 expression levels (post-pubertal), and (5) acute olanzapine treatment effectively attenuated schizophrenia-like abnormalities through normalized synapsin IIa expression levels (pre-pubertal) and increased GAD65/67 expression levels (post-pubertal). Results show the causal link between synapsin II expression during critical neurodevelopmental stages and schizophrenia. Additionally, evidence has been provided for the face, construct, and predictive validities of this newly developed animal model of schizophrenia. / Thesis / Doctor of Philosophy (PhD)
55

Behavioral and Neuroendocrine Effects of Psychosocial Stress during Pregnancy on the Maternal-infant Dyad

Zoubovsky, Sandra P. 29 October 2020 (has links)
No description available.
56

Construction and Psychometric Testing of the Quality of Developmental Care Scale

Burke, Sara J. January 2018 (has links)
No description available.
57

Factors Influencing Microbiota Diversity and Composition During Early Postnatal Development

Francella, Cassandra January 2019 (has links)
The human gut and brain have a bidirectional communication that has shown to play a pivotal role in our health and disease. Literature has shown that microbiota composition and diversity can be influenced by both genetic and environmental factors, contributing to shaping an individual’s microbial composition. The current work includes analysis of the microbiome of several mouse models to better understand how gene-environmental interactions during early development can influence the composition of microbiota within the gut. Here, male and female mice from several strains (C57BL/6, Balb/C, FVB, CD1) and genetically modified mice including T-cell receptor knock out mice (TCRβ-/-δ-/-) and Fragile-X-mice (FMR1-KO) were exposed to early life stressors including lipopolysaccharide (LPS) injection on postnatal day 3 (P3) and/or overnight maternal separation on P9. Fecal samples were collected at P24 and microbiota composition was determined by amplifying the 16s rRNA gene variable 3(v3) region and sequenced using the MiSeq Illumina platform. DADA2, was used to analyze this data in R software. Among the group, strain was found to be significant among alpha and beta diversity metrics while sex and stress were found to contribute to within strain variation, which demonstrated that both genetic and environmental factors are important in shaping an individual’s microbial composition. Secondly, we also explored the role of gut microbiota on the development of the immune system in TCRβ-/-δ-/- and C57BL/6 mice. Mice that lack T-lymphocytes were found to have a lower alpha diversity, as well as separated from their wild-type controls by beta diversity. Several bacterial taxa were found to be influenced by the immune system, demonstrating a bidirectional communication between the gut and T-cells. Lastly, the influence of litter, an environmental factor on microbial composition was explored within inbred mouse strains, C57BL/6 and Balb/C. Litter was found to influence alpha diversity, in which litters among C57BL/6 exhibited the greatest variation in such diversity. Beta diversity was also found to be influenced by litter, as related litters were found to cluster together. Differences in bacterial taxa between the inbred strains were observed and a subset of those taxa were found to be influenced by litter. Hierarchical clustering and co-occurrence analysis revealed different clusters of co-occurring taxa between both strains. These findings demonstrate that environmental factors can contribute to influence the composition of microbiota. / Thesis / Master of Science (MSc)
58

Prenatal Stress Shapes Offspring Neurodevelopment and Immunity: Role for CCL2 and the Gut Microbiome

Chen, Helen J. 15 September 2022 (has links)
No description available.
59

Informatics for EEG biomarker discovery in clinical neuroscience

Bosl, William 17 February 2016 (has links)
Neurological and developmental disorders (NDDs) impose an enormous burden of disease on children throughout the world. Two of the most common are autism spectrum disorder (ASD) and epilepsy. ASD has recently been estimated to affect 1 in 68 children, making it the most common neurodevelopmental disorder in children. Epilepsy is also a spectrum disorder that follows a developmental trajectory, with an estimated prevalence of 1%, nearly as common as autism. ASD and epilepsy co-occur in approximately 30% of individuals with a primary diagnosis of either disorder. Although considered to be different disorders, the relatively high comorbidity suggests the possibility of common neuropathological mechanisms. Early interventions for NDDs lead to better long-term outcomes. But early intervention is predicated on early detection. Behavioral measures have thus far proven ineffective in detecting autism before about 18 months of age, in part because the behavioral repertoire of infants is so limited. Similarly, no methods for detecting emerging epilepsy before seizures begin are currently known. Because atypical brain development is likely to precede overt behavioral manifestations by months or even years, a critical developmental window for early intervention may be opened by the discovery of brain based biomarkers. Analysis of brain activity with EEG may be under-utilized for clinical applications, especially for neurodevelopment. The hypothesis investigated in this dissertation is that new methods of nonlinear signal analysis, together with methods from biomedical informatics, can extract information from EEG data that enables detection of atypical neurodevelopment. This is tested using data collected at Boston Children’s Hospital. Several results are presented. First, infants with a family history of ASD were found to have EEG features that may enable autism to be detected as early as 9 months. Second, significant EEG-based differences were found between children with absence epilepsy, ASD and control groups using short 30-second EEG segments. Comparison of control groups using different EEG equipment supported the claim that EEG features could be computed that were independent of equipment and lab conditions. Finally, the potential for this technology to help meet the clinical need for neurodevelopmental screening and monitoring in low-income regions of the world is discussed.
60

Planar Cell Polarity and Neurodevelopment

Sun, Simon 05 May 2014 (has links)
Planar cell polarity (PCP) is a developmental signaling mechanism that establishes a polarity within the plane of an epithelium. PCP has been shown to play a role in guiding numerous neurodevelopmental processes such as convergent extension, neuron migration, and axon pathfinding. Certain commissural neurons in the dorsal spinal cord make a series of guidance decisions en route to the brain: first, a ventral projection along the D-V axis, followed by a midline crossing, and after exiting the floorplate, a dorso-anterior turn along the A-P axis. Here, we provide in vivo evidence that the axons of the Commissural Primary Ascending (CoPAs) neurons in zebrafish require the PCP genes fzd3a, vangl2, and scribble for rostral pathfinding both before and after crossing the midline. Dorsoventral guidance of CoPA axons is unaltered in fzd3a, vangl2, and scribble mutants, suggesting that the PCP signaling pathway only controls A-P guidance of CoPAs. Our results have provided evidence for two potential non- mutually exclusive models: (i) A-P axon guidance is achieved by cell-autonomous Wnt-Frizzled signaling or that (ii) A-P axon guidance is achieved by non-cell-autonomous PCP signaling in the neuroepithelial environment. The single-cell nature of the CoPA axon system allows for simple genetic manipulation and visualization, which will potentially elucidate the validity of either model. Scribble (Scrib), a member of the LAP family, plays a critical role in establishing and regulating cell polarization in epithelia and during cell migration. In zebrafish, Scrib mutants have defects in convergent extension (CE) cell movements and facial branchiomotor neuron (FBMN) migration. Despite our understanding of Scrib’s genetic role in neurodevelopment, little is known about the subcellular localization of endogenous Scrib in vivo during CE and FBMN migration. We have generated a monoclonal antibody against the C-terminus of zebrafish Scrib and have shown that this antibody is specific against endogenous Scrib in both western blot and immunocytochemical applications. Confocal microscopy of Scrib immunocytochemistry shows that at various developmental stages, Scrib distinctly localizes to basolateral membranes of non polarized epithelium, to the membrane in mesodermal cells undergoing CE, and to the membrane of migrating FBMNs. Furthermore, the distribution of Scrib puncta along membranes of FBMN- FBMN contact is significantly altered in the PCP mutant pk1b. Further application of our newly generated Scrib antibody will potentially lead to new insight on Scrib’s role in neurodevelopment.

Page generated in 0.0557 seconds