• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 26
  • 16
  • 3
  • 2
  • Tagged with
  • 93
  • 51
  • 48
  • 31
  • 30
  • 20
  • 20
  • 20
  • 19
  • 15
  • 15
  • 14
  • 10
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Die Rolle des Doublecortin-Gens in neuronalen Vorläuferzellen während Migration und Neurogenese

Karl, Claudia. January 2005 (has links) (PDF)
Universität Regensburg, Univ., Diss., 2005. / Erscheinungsjahr an der Haupttitelstelle: 2004
12

Funktionelle Analyse der IgCAMs in der Nervensystementwicklung von Caenorhabditis elegans

Schwarz, Valentin. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2005--Heidelberg.
13

Untersuchungen zur Differenzierung neu gebildeter Zellen im Hippocampus von adulten Serotonin-Transporter-Knockout-Mäusen / Differentiation of newborn cells in the hippocampus of adult serotonin transporter deficient mice

Hermann, Matthias R. M. January 2008 (has links) (PDF)
Das Phänomen der adulten Neurogenese existiert auch bei Säugetieren während der gesamten Ontogenese. In den letzten Jahren wurden viele physiologische und pathologische Faktoren bestimmt, die einen Einfluss auf die adulte Neurogenese haben. Ein bedeutender Einfluss auf die adulte Neurogenese übt dabei der 5-HT-Spiegel aus. 5-HT reguliert nicht nur während der embryonalen Entwicklung die Zellproliferation, Migration und Differenzierung, sondern ist auch ein wichtiger Faktor bei der adulten Neurogenese. Dabei wirkt 5-HT über den 5-HT1A-Rezeptor positiv auf die Stammzellproliferation und die adulte Neurogenese. Durch eine Therapie mit Antidepressiva kommt es ebenfalls zu einer 5-HT-Erhöhung im Extrazellularraum, dessen anregende Wirkung auf die Proliferation adulter Stammzellen im Gehirn nachgewiesen werden konnte. Darüber hinaus spielt 5-HT auch eine große Rolle bei neurophysiologischen Vorgängen im ZNS, die im Zusammenhang mit Emotionen, Lernen und Motorik stehen. Eine wichtige Grundlage der Depressionsforschung ist die Monoamin-Mangel-Hypothese, welche niedrige 5-HT-Spiegel als Ursache der Depression ansieht. In dieser Arbeit sollte der Einfluss eines existenten lebenslang erhöhten extrazellulären 5-HT-Spiegel auf die Neurogenese und vor allem auf die Differenzierungsrichtung neu gebildeter Zellen untersucht werden. Als Modell wurde eine transgene Mauslinie verwendet, bei der durch Knockout des 5-HTT ein permanent erhöhter extrazellulärer 5-HT-Spiegel vorliegt. Die Stammzellproliferation konnte eindeutig durch eine Markierung sich teilender Zellen mit BrdU nachgewiesen werden. Kolokalisationsstudien mit Hilfe von Immunofluoreszenzfärbungen und der anschließenden Darstellung mit dem Konfokalen Lasermikroskop konnten die Neubildung von Neuronen und Gliazellen und deren Migration an ihren funktionellen Ort darstellen. Es konnte kein signifikanter Unterschied in der Anzahl von im Hippocampus neu gebildeten Neuronen und Astrozyten zwischen Wildtyp- und 5-HTT-KO-Mäusen nachgewiesen werden. Auch die Lokalisation der neu entstandenen und 48 Tage nach BrdU-Applikation nachgewiesenen Zellen war bei den Wildtyp- und 5-HTT-KO-Tieren annähernd gleich. Die überwiegende Zahl mit 70% befand sich in der SGZ, 10 - 15% waren in der KZS lokalisiert und ein kleiner Teil befand sich im Hilus. Wir sind erst am Anfang des Verständnisses der exakten molekularen Mechanismen in der neuroendokrinen Interaktion zwischen Neuronen und deren Transmitter, vor allem dem an zentraler Stelle stehenden 5-HT. Neue Techniken, die nicht nur die morphologische, sondern auch die funktionelle Darstellung der neuronalen und neurophysiologische Tätigkeit liefern, werden in Zukunft neue Erkenntnisse bringen. / Serotonin (5-HT) is a regulator of morphogenetic activities during early brain development and neurogenesis, including cell proliferation, migration, differentiation, and synaptogenesis. The 5-HT transporter (5-HTT) mediates high-affinity reuptake of 5-HT into presynaptic terminals and thereby fine-tunes serotonergic neurotransmission. Inactivation of the 5-HTT gene in mice reduces 5-HT clearance resulting in persistently increased concentrations of synaptic 5-HT. In the present study the effects of elevated 5-HT levels on adult neurogenesis and the differentiation of the newborn cells in the hippocampus of 5-HTT deficient mice was investigated. Using an in vivo approach with BrDU and immunofluorescent technics and using a confocal laser microscope, we did not reveal significant changes in the survival of newborn cells in wildtype or 5-HTT knockout mice. We showed that the cellular fate of newly generated cells in 5-HTT knockout mice is not different with respect to the total number and percentage of neurons or glial cells from wildtype controls. Our findings indicate that elevated synaptic 5-HT concentration throughout early development and later life of 5-HTT deficient mice does not induce adult neurogenesis or change the cellular fate in adult mice.
14

Untersuchungen zur adulten Neurogenese im Hippocampus von nNOS-defizienten Mäusen / Investigations regarding the adult neurogenesis in the hippocampus of NOS-I deficient mice

Köth, Katharina January 2009 (has links) (PDF)
Der Prozess der adulten Neurogenese wird durch eine Vielzahl von Faktoren beein-flusst. Zu diesen zählt auch der Neurotransmitter und Second Messenger Stickstoffmonoxid (NO). Ziel der vorliegenden Arbeit war es, explizit den Einfluss des von der neuronalen NO-Synthase (nNOS) gebildeten NO-Moleküls auf die Teilprozesse des Überlebens und der Migration neu gebildeter Zellen im Bereich des Gyrus dentatus (DG) adulter Mäuse zu untersuchen. Um ausschließlich den Einfluss von nNOS untersuchen zu können, wurden die Experimente der vorliegenden Arbeit mit einem genetischen Modell der nNOS-defizienten Maus durchgeführt. Die Untersuchung des Überlebens und der Migration neu gebildeter Zellen im Bereich des DG der unterschiedlichen nNOS-Genotypen fand anhand des immunhistochemischen Nachweises des Thymidin-Analogons 5-Brom-2'-desoxyuridin (BrdU) sowie der quantitativen Analyse der BrdU-positiven Zellen statt. Um eine Aussage zum Überleben (sog. Survival) und zur Migration treffen zu können, wurde das Gewebe der Versuchstiere erst vier Wochen nach den erfolgten BrdU-Injektionen entnommen. Die Survivaluntersuchung zeigte eine im Vergleich zu den Kontrollen hochsignifikant erhöhte Anzahl bzw. Konzentration überlebender neu gebildeter Zellen in der Subgranulärzone (SGZ) und Körnerzellschicht (KZS) des DG der nNOS-Knockout(KO)-Mäuse. Die Migrationsuntersuchung ergab einen signifikant erhöhten Anteil der nach vier Wochen in die KZS eingewanderten neu gebildeten Zellen in den nNOS-KO-Mäusen. Das von nNOS gebildete NO scheint somit einen hemmenden Einfluss auf das Überleben und die Migration neu gebildeter Zellen im Bereich des DG adulter Mäuse zu besitzen. Um zu untersuchen, auf welche Weise das von Neuronen gebildete NO-Molekül die Teilprozesse des Überlebens und der Migration hemmen könnte, wurde zunächst die räumliche Nähe zwischen neuronalen Stamm- bzw. Vorläuferzellen und nNOS-positiven Zellen mit Hilfe von Kolokalisationsstudien mit fluorochrommarkierten Antikörpern gegen die Antigene BrdU und nNOS untersucht. Dazu wurden Mäuse verwendet, denen zum Nachweis der Proliferation adulter Stamm- bzw. Vorläuferzellen erst kurz vor der Gewebeentnahme BrdU injiziert worden war. Da die im Bereich des DG nur in geringer Anzahl vorliegenden nNOS-positiven Zellen relativ weit entfernt von den BrdU-positiven Zellen detektiert wurden, erscheint ein direkter Einfluss des von Neuronen gebildeten NO-Moleküls auf die neuronalen Stamm- bzw. Vorläuferzellen unwahrscheinlich. Um zu erforschen, ob der hemmende Einfluss von nNOS durch neurotoxische Eigen-schaften des NO-Moleküls bedingt ist, fand die Fluoro-Jade B(F-J B)-Färbung zum Nachweis degenerierender Neurone statt. Im Rahmen dieser Untersuchung zeigte sich kein signifikanter Unterschied hinsichtlich der Anzahl degenerierender Neurone im Bereich des DG der nNOS-KO- und nNOS-Wildtyp-Tiere. Die hemmende Wirkung des von Neuronen gebildeten NO-Moleküls auf das Überleben und die Migration muss folglich auf einen anderen Mechanismus als auf den der Neurotoxizität zurückzuführen sein. Das Ergebnis der F-J B-Färbung ist jedoch angesichts des hochsignifikant erhöhten Überlebens neu gebildeter Zellen im Bereich des DG der nNOS-KO-Mäuse bei vergleichbarem KZS-Volumen der verschiedenen nNOS-Genotypen durchaus kritisch zu bewerten und sollte durch andere Nachweise der Zelldegeneration überprüft werden. Der hemmende Einfluss von nNOS auf das Überleben neu gebildeter Zellen im Bereich des DG adulter Mäuse wurde schließlich auf dem Hintergrund der vielfach beschriebenen antiproliferativen und einer die Differenzierung fördernden Wirkung des NO-Moleküls interpretiert. So scheint das von nNOS gebildete NO den Prozess des Überlebens dadurch zu hemmen, dass es als antiproliferatives Agens den Übergang der neuronalen Vorläuferzellen aus dem Stadium der Proliferation in das der Differenzierung induziert. Diese Hypothese ließe sich durch entsprechende Kolokalisationsstudien zur Differenzierungsrichtung neu gebildeter Zellen im Bereich des DG adulter Mäuse erhärten. Zur Klärung der Zusammenhänge zwischen NO und Migration bedarf es erst noch grundlegender Untersuchungen zum physiologischen Ablauf der Migration neu gebildeter Zellen im Bereich des DG. / The process of adult neurogenesis in the hippocampus is divided into several distinct steps: stem cell proliferation, survival of the newly formed neural cells, their migration from the subgranular zone to the granular cell layer and their differentiation to functional neurons. The adult neurogenesis is regulated by different factors; nitric oxide has also been shown to be involved in the regulation of this process. In the present dissertation it has been investigated by BrdU-immunohistochemistry whether the survival and migration of newly formed neurons is altered in mice lacking neuronal nitric oxide synthase(NOS-I) with the result that both survival and migration were significantly higher in NOS-I deficient mice. To examine whether NOS-I positive cells in the dentate gyrus are located in the vicinity to dividing neural cells and thus are spatially capable to influence adult neurogenesis, immunhistochemical double-labeling for NOS-I and BrdU was performed. The staining revealed that NOS-I is highly expressed in cell bodies and processes of cells in the striatum, all parts of the cortex, several parts of the hypothalamus and the mammilary nucleus. In comparison, there are only few neurons expressing NOS-I in the dentate gyrus and the CA1-3 regions of the hippocampus. NOS-I positive neurons in the dentate gyrus do not co-express the proliferation marker BrdU and are located distantly (approximately 45µM) to the new-born cells. Direct influence of NOS-I on the Brdu-incorporating cells in the dentate gyrus seems therefore unlikely. NOS-I rather appears to indirectly impede the survival of the new-born cells, probably by switching these young neural cells from survival to differentiation.
15

Metabolic alterations in connexin36 knock-out mice induce gender-specific changes in dentate gyrus function

Göngrich, Christina. January 2008 (has links)
Heidelberg, Univ., Diss., 2008.
16

Analyse von Neuron-Glia Interaktionen im embryonalen Nervensystem von Drosophila

Pielage, Jan. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2002--Münster (Westfalen).
17

Identification and characterisation of novel zebrafish brain development mutants obtained by large scale forward mutagenesis screening

Klisa, Christiane. Unknown Date (has links) (PDF)
Techn. University, Diss., 2004--Dresden.
18

Die Bedeutung der extrazellulären Matrix und sezernierter Signalmoleküle für die axonale Wegfindung in Drosophila melanogaster

Hillebrand, Jens. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2004--Münster (Westfalen).
19

Die Transaktivierung des Neurotrophin-Rezeptors TrkB durch EGF während der Kortexentwicklung der Maus / Transactivation of the neurotrophin receptor trkB by EGF during corticogenesis in mice

Pühringer, Dirk January 2010 (has links) (PDF)
Die Rolle der Hirnrinde als Zentrum komplexer Funktionen wie Lernen und Ge-dächtnis wird nicht zuletzt durch deren komplexe, in Schichten organisierte Architek-tur ermöglicht. Von entscheidender Bedeutung ist die präzise Positionierung von Nervenzellen, die im Laufe der Embryonalentwicklung in der Ventrikularzone (VZ) geboren werden und anschließend in radialer Richtung zu ihrem Bestimmungsort wandern. Die Funktion des Neurotrophin-Rezeptors TrkB an der Entwicklung des zerebralen Kortex war Gegenstand dieser Arbeit. Am Tag 12,5 der Embryonalentwicklung konnte die Expression von TrkB so-wohl in den Zellen der VZ als auch in neu geborenen Neuronen der Präplatte nach-gewiesen werden. Die Phosphorylierung des Rezeptors erfolgte dabei unabhängig von den beiden Liganden BDNF und NT-3. Ebenso führten BDNF oder NT-3 zu keiner zellulären Antwort in isolierten kortikalen Vorläuferzellen, wohingegen die Stimulation mit EGF eine Phosphorylierung von TrkB an der PLCγ- und der Shc-Bindungsstelle hervorrief. Durch pharmakologische Inhibition und die Überexpression dominant negativer Src-Mutanten konnte die Beteiligung des EGF-Rezeptors und zweier neuronal exprimierter Src-Kinasen, cSrc und Fyn, an dieser Transaktivierung von TrkB durch EGF gezeigt werden. Durch die Zugabe von EGF kam es im Zuge der Aktivierung von TrkB auch zur Umverteilung des Rezeptors von intrazellulären Kompartimenten zur Zellmem-bran. Die Retention des Rezeptors im Zytoplasma wurde über post-translationelle Modifikation reguliert. Die Verhinderung von N-Glykosylierung durch Tunicamycin-Behandlung kortikaler Vorläuferzellen führte zur Exposition von TrkB an der Zellober-fläche und konnte so Responsivität gegenüber BDNF herstellen. Die physiologische Bedeutung einer Transaktivierung von TrkB durch EGF wurde durch das Fehlen der TrkB-Aktivierung in EGFR KO-Mäusen am Embryonal-tag 12,5 gezeigt. Dies hatte eine fehlerhafte Positionierung kortikaler Nervenzellen zum Zeitpunkt E15,5 zur Folge. Anhand eines Migrationsassays konnte schließlich gezeigt werden, dass die EGF-induzierte Wanderung kortikaler Vorläuferzellen in vitro mit einer asymmetrischen Translokation von TrkB einhergeht. Über die Transaktivierung von TrkB in frühen Phasen der Kortexentwicklung spielt EGF eine wichtige Rolle bei der Induktion neuronaler Differenzierung und ist an der Regulation der Wanderung postmitotischer Neurone in der Hirnrinde beteiligt. / The complex layered architecture of the cerebral cortex is a prerequisite for its role as the centre of complex cognitive functions like learning and memory. In this respect, the precise positioning of neurons is a crucial event. During embryogenesis, the majority of cortical neurons is born in the ventricular zone of the forebrain, from where postmitotic cells migrate radially to their specific destinations. The role of the neurotrophin receptor TrkB for the development of the cerebral cortex was studied in this thesis. At embryonic day 12.5, the expression of TrkB was confined to the proliferative precursor cells in the ventricular zone as well as in the newborn neurons building up the preplate at the pial surface of the developing cortex. Thereby, the phospho-rylation of the receptor was independent of the ligands BDNF or NT-3. Likewise, the stimulation of isolated cortical precursor cells with BDNF or NT-3 did not lead to any cellular response, whereas cells challenged with EGF showed a robust increase of phospho-rylation at the PLCγ- and Shc-binding sites of TrkB. The contribution of the EGF receptor and the two src family members cSrc and Fyn to this transactivation event could be established via pharmacological inhibition and the overexpression of dominant negative mutants. Upon EGF stimulation, cortical precursor cells did not only show the activation of TrkB but also the translocation of the receptor from intracellular compartments to the plasma membrane. The retention of TrkB in the cytoplasm was achieved by post-translational modifications. In this respect, the inhibition of N-glycosylation in cortical precursors by treatment with tunicamycin led to the exposition of TrkB at the cell surface and thereby restored responsiveness to BDNF. The physiological significance of TrkB transactivation by EGF was underlined by the almost complete absence of TrkB phosphorylation in the forebrain of EGF receptor deficient mice at E12.5, leading to the disturbed positioning of cortical neurons at E15.5. Applying the stripe assay, it could be shown, that the migration of cortical precursors in vitro is accompanied with an asymmetric translocation of TrkB. By the transactivation of TrkB, EGF is able to induce neuronal differentiation in early phases of corticogenesis and furthermore takes part in regulating the migration of postmitotic neurons within the cerebral cortex.
20

Molecular mechanisms of floor plate formation and neural patterning in zebrafish / Molekulare Mechanismen der Bodenplatten Entwicklung und neuronale Musterbildung im Zebrafisch

Schäfer, Matthias January 2005 (has links) (PDF)
The vertebrate spinal cord is composed of billions of neurons and glia cells, which are formed in a highly coordinated manner during early neurogenesis. Specification of these cells at distinct positions along the dorsoventral (DV) axis of the developing spinal cord is controlled by a ventrally located signaling center, the medial floor plate (MFP). Currently, the origin and time frame of specification of this important organizer are not clear. During my PhD thesis, I have analyzed the function of the novel secreted growth factor Midkine-a (Mdka) in zebrafish. In higher vertebrates, mdk and the related factor pleiotrophin (ptn) are widely expressed during embryogenesis and are implicated in a variety of processes. The in-vivo function of both factors, however, is unclear, as knock-out mice show no embryonic phenotype. We have isolated two mdk co-orthologs, mdka and mdkb, and one single ptn gene in zebrafish. Molecular phylogenetic analyses have shown that these genes evolved after two large gene block duplications. In contrast to higher vertebrates, zebrafish mdk and ptn genes have undergone functional divergence, resulting in mostly non-redundant expression patterns and functions. I have shown by overexpression and knock-down analyses that Mdka is required for MFP formation during zebrafish neurulation. Unlike the previously known MFP inducing factors, mdka is not expressed within the embryonic shield or tailbud but is dynamically expressed in the paraxial mesoderm. I used epistatic and mutant analyses to show that Mdka acts independently from these factors. This indicates a novel mechanism of Mdka dependent MFP formation during zebrafish neurulation. To get insight into the signaling properties of zebrafish Mdka, the function of both Mdk proteins and the candidate receptor Anaplastic lymphoma kinase (Alk) have been compared. Knock-down of mdka and mdkb resulted in the same reduction of iridophores as in mutants deficient for Alk. This indicates that Alk could be a putative receptor of Mdks during zebrafish embryogenesis. In most vertebrate species a lateral floor plate (LFP) domain adjacent to the MFP has been defined. In higher vertebrates it has been shown that the LFP is located within the p3 domain, which forms V3 interneurons. It is unclear, how different cell types in this domain are organized during early embryogenesis. I have analyzed a novel homeobox gene in zebrafish, nkx2.2b, which is exclusively expressed in the LFP. Overexpression, mutant and inhibitor analyses showed that nkx2.2b is activated by Sonic hedgehog (Shh), but repressed by retinoids and the motoneuron-inducing factor Islet-1 (Isl1). I could show that in zebrafish LFP and p3 neuronal cells are located at the same level along the DV axis, but alternate along the anteroposterior (AP) axis. Moreover, these two different cell populations require different levels of HH signaling and nkx2.2 activities. This provides new insights into the structure of the vertebrate spinal cord and suggests a novel mechanism of neural patterning. / Das Rückenmark von Vertebraten besteht aus Milliarden von Neuronen und Gliazellen, die in einem sehr komplexen Muster während der frühen Neurogenese gebildet werden. Die Spezifizierung dieser Zellen an spezifischen Positionen entlang der dorsoventralen (DV) Achse des Rückenmarks wird durch ein ventrales Organisationszentrum, die mediale Bodenplatte (MFP), kontrolliert. Die Herkunft und der Zeitraum der Spezifizierung dieses wichtigen Organisationszentrums sind zurzeit nicht klar. In meiner Doktorarbeit habe ich die Funktionen des neuen Wachstumsfaktors Midkine-a (Mdka) im Zebrafisch charakterisiert. Mdka und der verwandte Faktor pleiotrophin (ptn) zeigen ein breites Expressionsmuster während der Embryogenese von höheren Vertebraten und sind offenbar an einer Vielzahl von Prozessen beteiligt. Die exakten in-vivo Funktionen sind jedoch nicht bekannt, da knock-out Mäuse keinen embryonalen Phänotyp zeigen. Im Zebrafisch haben wir zwei co-orthologe mdk Gene, mdka und mdkb, sowie ein ptn Gen-Ortholog isoliert. Molekulare phylogenetische Analysen ergaben, dass diese Gene durch zwei unabhängige Duplikationen eines Gen-Blocks entstanden sind. Im Gegensatz zu höheren Vertebraten haben mdk und ptn Gene divergente Funktionen entwickelt, was zu weitestgehend nicht redundanten Funktionen und Expressionsmustern geführt hat. Mittels Überexpressions- und knock-down Analysen konnte ich zeigen, dass Mdka für die Bildung der MFP im Zebrafisch benötigt wird. Anders als bisher bekannte MFP induzierende Faktoren ist Mdka nicht im embryonalen Gastrula-Organisator, dem ‚Shield’ oder der Schwanzknospe exprimiert, sondern dynamisch im paraxialen Mesoderm. Durch epistatische Analysen und Mutanten-Experimente konnte ich weiterhin zeigen, dass Mdka unabhängig von diesen Faktoren wirkt. Dies deutet auf einen neuen Mdka abhängigen Mechanismus der MFP- Bildung während der Neurogenese im Zebrafisch hin. Um Einblick in den Signalweg von Mdka im Zebrafisch zu erhalten, wurde die Funktion der midkine Gene mit der des potentiellen Rezeptors, der Anaplastischen Lymphom-Kinase (Alk), verglichen. Ein ‚Knock-down’ beider Mdk Proteine führte zu einer vergleichbaren Reduktion von Iridophoren wie bei Alk defizienten Mutanten. Demnach könnte Alk ein Rezeptor beider Mdk Proteine während der Zebrafisch-Embryogenese sein. In vielen Vertebratenspezies wurde neben der MFP eine laterale Bodenplatten (LFP) Domäne definiert. In höheren Vertebraten wurde gezeigt, dass LFP Zellen innerhalb der p3 neuronalen Domäne lokalisiert sind, welche V3 Interneuronen bilden. Es ist zurzeit nicht klar, wie diese Zelltypen angeordnet sind und wie sie während der Embryogenese gebildet werden. Ich habe ein neues Homeobox Gen nkx2.2b im Zebrafisch analysiert, welches ausschließlich in der LFP exprimiert ist. Überexpressions-, Mutanten- und Inhibitorenanalysen haben gezeigt, dass nkx2.2b durch Sonic Hedgehog (Shh) aktiviert, durch Retinolsäure und den Motoneuronen induzierenden Faktor Islet-1 (Isl1) aber reprimiert wird. Ich konnte weiterhin zeigen, dass im Zebrafisch LFP und p3 neuronale Zellen auf der gleichen Ebene entlang der DV Achse lokalisiert sind und entlang der anteroposterioren (AP) Achse alternieren. Diese zwei Zellpopulationen benötigen verschiedene Aktivitäten von Hedgehog und nkx2.2b. Dies stellt einen neuen Aspekt für den Aufbau des Rückenmarks von Vertebraten dar und deutet auf einen bisher unbekannten Mechanismus der neuronalen Musterbildung hin.

Page generated in 0.0568 seconds