11 |
Functional neuroanatomy of tachykinins in brainstem autonomic regulationMakeham, John Murray January 1997 (has links)
Doctor of Philosophy (PhD) / Little is known about the role that tachykinins, such as substance P and its receptor, the neurokinin-1 receptor, play in the generation of sympathetic nerve activity and the integration within the ventrolateral medulla (VLM) of many vital autonomic reflexes such as the baroreflex, chemoreflex, somato-sympathetic reflex, and the regulation of cerebral blood flow. The studies described in this thesis investigate these autonomic functions and the role of tachykinins through physiological (response to hypercapnoea, chapter 3), anatomical (neurokinin-1 receptor immunohistochemistry, chapter 4) and microinjection (neurokinin-1 receptor activation and blockade, chapters 5 and 6) experiments. In the first series of experiments (chapter 3) the effects of chemoreceptor activation with hyperoxic hypercapnoea (5%, 10% or 15% CO2 in O2) on splanchnic sympathetic nerve activity and sympathetic reflexes such as the baroreflex and somato-sympathetic reflex were examined in anaesthetized rats. Hypercapnoea resulted in sympatho-excitation in all groups and a small increase in arterial blood pressure in the 10 % CO2 group. Phrenic nerve amplitude and phrenic frequency were also increased, with the frequency adapting back to baseline during the CO2 exposure. Hypercapnoea selectively attenuated (5% CO2) or abolished (10% and 15% CO2) the somato-sympathetic reflex while leaving the baroreflex unaffected. This selective inhibition of the somato-sympathetic reflex while leaving the baroreflex unaffected was also seen following neurokinin-1 receptor activation in the rostral ventrolateral medulla (RVLM) (see below). Microinjection of substance P analogues into the RVLM results in a pressor response, however the anatomical basis for this response is unknown. In the second series of experiments (chapter 4), the distribution of the neurokinin-1 receptor in the RVLM was investigated in relation to catecholaminergic (putative sympatho-excitatory “C1”) and bulbospinal neurons. The neurokinin-1 receptor was demonstrated on a small percentage (5.3%) of C1 neurons, and a small percentage (4.7%) of RVLM C1 neurons also receive close appositions from neurokinin-1 receptor immunoreactive terminals. This provides a mechanism for the pressor response seen with RVLM microinjection of substance P analogues. Neurokinin-1 receptor immunoreactivity was also seen a region overlapping the preBötzinger complex (the putative respiratory rhythm generation region), however at this level a large percentage of these neurons are bulbospinal, contradicting previous work suggesting that the neurokinin-1 receptor is an exclusive anatomical marker for the propriobulbar rhythm generating neurons of the preBötzinger complex. The third series of experiments (chapter 5) investigated the effects of neurokinin-1 receptor activation and blockade in the RVLM on splanchnic sympathetic nerve activity, arterial blood pressure, and autonomic reflexes such as the baroreflex, somato-sympathetic reflex, and sympathetic chemoreflex. Activation of RVLM neurokinin-1 receptors resulted in sympatho-excitation, a pressor response, and abolition of phrenic nerve activity, all of which were blocked by RVLM pre-treatment with a neurokinin-1 receptor antagonist. As seen with hypercapnoea, RVLM neurokinin-1 receptor activation significantly attenuated the somato-sympathetic reflex but did not affect the sympathetic baroreflex. Further, blockade of RVLM neurokinin-1 receptors significantly attenuated the sympathetic chemoreflex, suggesting a role for RVLM substance P release in this pathway. The fourth series of experiments (chapter 6) investigated the role of neurokinin-1 receptors in the RVLM, caudal ventrolateral medulla (CVLM), and nucleus tractus solitarius (NTS) on regional cerebral blood flow (rCBF) and tail blood flow (TBF). Activation of RVLM neurokinin-1 receptors increased rCBF associated with a decrease in cerebral vascular resistance (CVR). Activation of CVLM neurokinin-1 receptors decreased rCBF, however no change in CVR was seen. In the NTS, activation of neurokinin-1 receptors resulted in a biphasic response in both arterial blood pressure and rCBF, but no significant change in CVR. These findings suggest that in the RVLM substance P and the neurokinin-1 receptor play a role in the regulation of cerebral blood flow, and that changes in rCBF evoked in the CVLM and NTS are most likely secondary to changes in arterial blood pressure. Substance P and neurokinin-1 receptors in the RVLM, CVLM and NTS do not appear to play a role in the brainstem regulation of tail blood flow. In the final chapter (chapter 7), a model is proposed for the role of tachykinins in the brainstem integration of the sympathetic baroreflex, sympathetic chemoreflex, cerebral vascular tone, and the sympatho-excitation seen following hypercapnoea. A further model for the somato-sympathetic reflex is proposed, providing a mechanism for the selective inhibition of this reflex seen with hypercapnoea (chapter 3) and RVLM neurokinin-1 receptor activation (chapter 5). In summary, the ventral medulla is essential for the generation of basal sympathetic tone and the integration of many vital autonomic reflexes such as the baroreflex, chemoreflex, somato-sympathetic reflex, and the regulation of cerebral blood flow. The tachykinin substance P, and its receptor, the neurokinin-1 receptor, have a role to play in many of these vital autonomic functions. This role is predominantly neuromodulatory.
|
12 |
NEUROKININ 1 RECEPTORS AND THEIR ROLE IN OPIOID-INDUCED HYPERALGESIA, ANTINOCICEPTIVE TOLERANCE AND REWARDLargent- Milnes, Tally Marie January 2010 (has links)
Pain is the most common and debilitating sign of a medical problem, with nearly 15 million patients suffering from chronic pain, including neuropathic pain. Widely used therapies for treating neuropathic pain include tri-cyclic antidepressants, opioids, anticonvulsants, non-steroidal anti-inflammatory agents and combinations thereof. Despite the abundance of treatments, the management of chronic pain remains difficult due to an inability for many patients to achieve appropriate pain relief at doses which are tolerable over long periods of time.Opiates (natural products), or opioids (synthetic derivatives), are considered the gold standard of analgesic care, though with little efficacy for neuropathic pain. Opioids are associated with unwanted side effects, including paradoxical pain and abuse liability that may result from several nervous system adaptations within the pain modulating neural network. These dose related side effects become more prevalent as clinicians try to overcome analgesic tolerance.Molecular mechanisms underlying these unwanted side effects have been studied extensively, and the literature purports a variety of contributing factors and neurobiological adaptations. The studies herein describe additional molecular adaptations and novel pharmacological approaches to counteract these changes. First, the contributions of neurobiological remodeling within a single receptor system (the opioid system) were investigated in the spinal dorsal horn after peripheral nerve ligation and chronic exposure to an opioid agonist in combination with an ultra-low-dose of opioid antagonist. The effects of the ultra-low-dose opioid antagonist naltrexone on the efficacy of oxycodone for neuropathic pain were investigated after both central and systemic administration.Secondly, molecular remodeling occurs across different receptor systems in the pain network, including altered regulation of pronociceptive molecules (e.g. substance P; SP). Previous studies have reported that opioid-induced hyperalgesia, tolerance and reward can be prevented by a blockade or ablation of SP activity at the neurokinin 1 receptor (NK1). We have characterized single compounds, rationally designed to act as opioid agonists and an NK1 antagonist using in vitro assays and the efficacy in vivo using rodent models of pain, antinociceptive tolerance and reward. Collectively, these studies validate the concept of targeting multiple neurobiological adaptations as a therapeutic option for neuropathic pain and reducing opioid- mediated side effects.
|
13 |
Functional neuroanatomy of tachykinins in brainstem autonomic regulationMakeham, John Murray January 1997 (has links)
Doctor of Philosophy (PhD) / Little is known about the role that tachykinins, such as substance P and its receptor, the neurokinin-1 receptor, play in the generation of sympathetic nerve activity and the integration within the ventrolateral medulla (VLM) of many vital autonomic reflexes such as the baroreflex, chemoreflex, somato-sympathetic reflex, and the regulation of cerebral blood flow. The studies described in this thesis investigate these autonomic functions and the role of tachykinins through physiological (response to hypercapnoea, chapter 3), anatomical (neurokinin-1 receptor immunohistochemistry, chapter 4) and microinjection (neurokinin-1 receptor activation and blockade, chapters 5 and 6) experiments. In the first series of experiments (chapter 3) the effects of chemoreceptor activation with hyperoxic hypercapnoea (5%, 10% or 15% CO2 in O2) on splanchnic sympathetic nerve activity and sympathetic reflexes such as the baroreflex and somato-sympathetic reflex were examined in anaesthetized rats. Hypercapnoea resulted in sympatho-excitation in all groups and a small increase in arterial blood pressure in the 10 % CO2 group. Phrenic nerve amplitude and phrenic frequency were also increased, with the frequency adapting back to baseline during the CO2 exposure. Hypercapnoea selectively attenuated (5% CO2) or abolished (10% and 15% CO2) the somato-sympathetic reflex while leaving the baroreflex unaffected. This selective inhibition of the somato-sympathetic reflex while leaving the baroreflex unaffected was also seen following neurokinin-1 receptor activation in the rostral ventrolateral medulla (RVLM) (see below). Microinjection of substance P analogues into the RVLM results in a pressor response, however the anatomical basis for this response is unknown. In the second series of experiments (chapter 4), the distribution of the neurokinin-1 receptor in the RVLM was investigated in relation to catecholaminergic (putative sympatho-excitatory “C1”) and bulbospinal neurons. The neurokinin-1 receptor was demonstrated on a small percentage (5.3%) of C1 neurons, and a small percentage (4.7%) of RVLM C1 neurons also receive close appositions from neurokinin-1 receptor immunoreactive terminals. This provides a mechanism for the pressor response seen with RVLM microinjection of substance P analogues. Neurokinin-1 receptor immunoreactivity was also seen a region overlapping the preBötzinger complex (the putative respiratory rhythm generation region), however at this level a large percentage of these neurons are bulbospinal, contradicting previous work suggesting that the neurokinin-1 receptor is an exclusive anatomical marker for the propriobulbar rhythm generating neurons of the preBötzinger complex. The third series of experiments (chapter 5) investigated the effects of neurokinin-1 receptor activation and blockade in the RVLM on splanchnic sympathetic nerve activity, arterial blood pressure, and autonomic reflexes such as the baroreflex, somato-sympathetic reflex, and sympathetic chemoreflex. Activation of RVLM neurokinin-1 receptors resulted in sympatho-excitation, a pressor response, and abolition of phrenic nerve activity, all of which were blocked by RVLM pre-treatment with a neurokinin-1 receptor antagonist. As seen with hypercapnoea, RVLM neurokinin-1 receptor activation significantly attenuated the somato-sympathetic reflex but did not affect the sympathetic baroreflex. Further, blockade of RVLM neurokinin-1 receptors significantly attenuated the sympathetic chemoreflex, suggesting a role for RVLM substance P release in this pathway. The fourth series of experiments (chapter 6) investigated the role of neurokinin-1 receptors in the RVLM, caudal ventrolateral medulla (CVLM), and nucleus tractus solitarius (NTS) on regional cerebral blood flow (rCBF) and tail blood flow (TBF). Activation of RVLM neurokinin-1 receptors increased rCBF associated with a decrease in cerebral vascular resistance (CVR). Activation of CVLM neurokinin-1 receptors decreased rCBF, however no change in CVR was seen. In the NTS, activation of neurokinin-1 receptors resulted in a biphasic response in both arterial blood pressure and rCBF, but no significant change in CVR. These findings suggest that in the RVLM substance P and the neurokinin-1 receptor play a role in the regulation of cerebral blood flow, and that changes in rCBF evoked in the CVLM and NTS are most likely secondary to changes in arterial blood pressure. Substance P and neurokinin-1 receptors in the RVLM, CVLM and NTS do not appear to play a role in the brainstem regulation of tail blood flow. In the final chapter (chapter 7), a model is proposed for the role of tachykinins in the brainstem integration of the sympathetic baroreflex, sympathetic chemoreflex, cerebral vascular tone, and the sympatho-excitation seen following hypercapnoea. A further model for the somato-sympathetic reflex is proposed, providing a mechanism for the selective inhibition of this reflex seen with hypercapnoea (chapter 3) and RVLM neurokinin-1 receptor activation (chapter 5). In summary, the ventral medulla is essential for the generation of basal sympathetic tone and the integration of many vital autonomic reflexes such as the baroreflex, chemoreflex, somato-sympathetic reflex, and the regulation of cerebral blood flow. The tachykinin substance P, and its receptor, the neurokinin-1 receptor, have a role to play in many of these vital autonomic functions. This role is predominantly neuromodulatory.
|
14 |
Immune regulation of herpes simplex virus type 2 infection : special emphasis on the transcription Factor T-bet /Svensson, Alexandra, January 2006 (has links)
Diss. (sammanfattning) Göteborg : Göteborgs universitet, 2006. / Härtill 4 uppsatser.
|
15 |
Tachykinine und Tachykinin-Rezeptoren in der Innervation der Lunge der Maus : Veränderungen bei Hypoxie und BDNF-Überexpression /Wagner, Sabine. January 2004 (has links)
Universiẗat, Diss., 2004--Giessen.
|
16 |
The Effects of KNDy Neuron Peptides on Prolactin and Luteinizing Hormone in Pup-Deprived Lactating RatsBarnard, Amanda Leann 01 August 2014 (has links)
Lactation is the final stage of reproduction in mammals and is characterized by chronically elevated prolactin and suppressed luteinizing hormone. The neuroendocrine regulation of prolactin and luteinizing hormone during lactation are not fully understood. In the hypothalamic arcuate nucleus is a population of neurons known as KNDy neurons because they co-express the neuropeptides Kisspeptin, Neurokinin B and Dynorphin. These neurons are known to project to gonadotropin-releasing hormone cell bodes in the preoptic area and nerve terminals in the median eminence, which regulate the secretion of luteinizing hormone, and to dopaminergic tuberoinfundibular neurons in the arcuate nucleus, which are known to regulate prolactin. Because KNDy neurons project to neuronal populations known to regulate both prolactin and luteinizing hormone, the general hypothesis for these studies is that neuropeptides Kisspeptin, Neurokinin B and Dynorphin play a role in regulating these hormones or are regulated by these hormones during lactation. In a model of lactating rats deprived of their pups for 24 hours, intracerebroventricular injection of an endogenous Kisspeptin receptor ligand, Kp-10, modestly increased prolactin secretion and markedly increased luteinizing hormone secretion. Neither Neurokinin B nor the Neurokinin B receptor agonist, Senktide, had a significant effect on either hormone in this rat model. Dynorphin and U-50,488, a kappa opioid receptor agonist, robustly increased prolactin although no changes were measured in luteinizing hormone levels. In this model of 24-hour pup-deprived lactating rats, prolactin was responsive to kappa opioid receptor agonists and luteinizing hormone was responsive to Kisspeptin receptor agonists. In a second set of experiments, sense and anti-sense in situ hybridization probes were developed for Kiss1, the Kisspeptin gene, and Tac2, the gene encoding Neurokinin B. It was confirmed that the cDNA sequences cloned for these mRNAs were correct and were highly homologous to published rat mRNA sequences. In situ hybridization was performed using the Kiss1 and Tac2 probes, as well as a probe for Pdyn, which encodes Dynorphin. No specific cytoplasmic signal was observed using any of the three sense probes. With the anti-sense probes, clusters of reduced silver grains representing Kiss1, Tac2 and Pdyn mRNAs were observed in the arcuate nucleus, lateral to the third ventricle and superior to the median eminence. These expression patterns were consistent with the published literature. Also, the expression patterns for all three neuropeptides were similar to each other, suggesting that many of the arcuate nucleus neurons lateral to the third ventricle and superior to the median eminence are KNDy neurons.
|
17 |
Sustained Isometric Contraction of Skeletal Muscle Results in Release of Immunoreactive Neurokinins in the Spinal Cord of the Anaesthetized CatDuggan, A. W., Hope, P. J., Lang, C. W., Williams, C. A. 28 January 1991 (has links)
Antibody microprobes were used to study release of immunoreactive neurokinins in the dorsal horn of the anaesthetized spinal cat following sustained isometric contraction of ipsilateral hindlimb muscles. Microprobes had immobilized antibodies to neurokinin A (NKA) on their outer surfaces and bound a proportion of released molecules when inserted in the central nervous system. Bound molecules were detected in autoradiographs as zones of reduced binding of 125I-NKA in which microprobes were incubated after withdrawal from the spinal cord. The left hindlimb was immobilized using an epoxy bandage splint and isometric contraction of muscles induced by intermittent tetanic stimulation of a ventral root. A basal presence of immunoreactive neurokinins was detected and this was increased by sustained isometric muscle contraction. It is probable that ergoreceptors contain and release neurokinins.
|
18 |
Autoradiographic Localization of NK<sub>1</sub> and NK<sub>3</sub> Tachykinin Receptors in Rat KidneyChen, Yuejin, Hoover, Donald B. 01 January 1995 (has links)
The distribution of neurokinin receptors in rat kidney, renal artery, renal vein, and proximal ureter was evaluated by autoradiography after in vitro labeling of NK1 sites with [125I]Bolton-Hunter substance P (BHSP) or NK3 sites with [125I][MePhe7]neurokinin B ([MePhe7NKB). Film autoradiography using [125I][MePhe7]NKB revealed specific binding sites associated with the renal vein and its large branches, the renal pelvis, the inner strip of outer renal medulla, and the proximal ureter. High-resolution autoradiograms demonstrated that these sites were localized to the smooth muscle layer in the veins, pelvis, and ureter. Neither the renal arterial system nor the renal cortex contained specific [125I][MePhe7]NKB binding sites although a high level of nonspecific binding was associated with the renal artery. Specific binding of [125I]BHSP was associated with the renal artery and renal pelvis but not the renal veins. Arterial NK1 receptors appeared to be localized to the adventitia. The results indicate that at least two types of tachykinin receptor are present in the rat kidney. The distinct localization observed for most of the NK1 and NK3 receptors suggests that they have different functions.
|
19 |
Influences of paratendinous innervation and non-neuronal substance P in tendinopathy : studies on human tendon tissue and an experimental model of Achilles tendinopathyAndersson, Gustav January 2010 (has links)
Pain of the musculoskeletal system is one of the most common reasons for people seeking medical attention, and is also one of the major factors that prevent patients from working. Chronic tendon pain, tendinopathy, affects millions of workers world-wide, and the Achilles tendon is an important structure often afflicted by this condition. The pathogenesis of tendinopathy is poorly understood, but it is thought to be of multifactoral aetiology. It is known that tendon pain is often accompanied not only by impaired function but also by structural tissue changes, like vascular proliferation, irregular collagen organisation, and hypercellularity, whereby the condition is called tendinosis. In light of the poor knowledge of tendinosis pathophysiology and recent findings of a non-neuronal signalling system in tendon tissue, the contributory role of neuropeptides such as substance P (SP) has gained increased interest. SP, known for afferent pain signalling in the nervous system, also has multiple efferent functions and has been described to be expressed by non-neuronal cells. As pain is the most prominent symptom of tendinopathy, the focus of the studies in this thesis was the innervation patterns of the tissue ventral to the Achilles tendon (i.e. the tissue targeted in many contemporary treatment methods) as well as the distribution of SP and its preferred receptor, the neurokinin-1 receptor (NK-1R), in the tendon tissue itself. It was hereby hypothesised that the source of SP affecting the Achilles tendon might be the main cells of the tendon tissue (the tenocytes) as well as paratendinous nerves, and that SP might be involved in tendinosis- development. The studies were conducted, via morphological staining methods including immunohistochemistry and in situ hybridisation, on tendon biopsies from patients suffering from Achilles tendinosis and on those from healthy volunteers. The hypothesis of the thesis was furthermore tested using an experimental animal model (rabbit) of Achilles tendinopathy, which was first validated. The model was based on a previously established overuse protocol of repetitive exercise. In the human biopsies of the tissue ventral to the Achilles tendon, there was a marked occurrence of sympathetic innervation, but also sensory, SP-containing, nerve fibres. NK-1R was expressed on blood vessels and nerve fascicles of the paratendinous tissue, but also on the tenocytes of the tendon tissue proper itself, and notably more so in patients suffering from tendinosis. Furthermore, the human tenocytes displayed not only NK-1R mRNA but also mRNA for SP. The animal model was shown to produce objectively verified tendinosis-like changes, such as hypercellularity and increased vascularity, in the rabbit Achilles tendons, after a minimum of three weeks of the exercise protocol. The contralateral leg of the animals in the model was found to be an unreliable control, as bilateral changes occured. The model furthermore demonstrated that exogenously administered SP triggers an inflammatory response in the paratendinous tissue and accelerates the intratendinous tendinosis-like changes such that they now occur after only one week of the protocol. Injections of saline as a control showed similar results as SP concerning hypercellularity, but did not lead to vascular changes or pronounced paratendinous inflammation. In summary, this thesis concludes that interactions between the peripheral sympathetic and sensory nervous systems may occur in Achilles tendinosis at the level of the ventral paratendinous tissue, a region thought to be of great importance in chronic tendon pain since many successful treatments are directed toward it. Furthermore, the distribution of NK-1R:s in the Achilles tendon described in these studies gives a basis for SP, whether produced by nerves mainly outside the tendon or by tenocytes within the tendon, to affect blood vessels, nerve structures, and/or tendon cells, especially in tendinosis patients. In light of this and of previously known SP-effects, such as stimulation of angiogenesis, pain signalling, and cell proliferation, the proposed involvement of SP in tendinosis development seems likely. Indeed, the animal model of Achilles tendon overuse confirms that SP does induce vascular proliferation and hypercellularity in tendon tissue, thus strengthening theories of SP playing a role in tendinosis pathology.
|
20 |
Changes in the spinal cord and peripheral innervation in an animal model of arthritisAlmarestani, Lina M. G. January 1900 (has links)
Thesis (Ph.D.). / Written for the Dept. of Pharmacology and Therapeutics. Title from title page of PDF (viewed 2009/06/05). Includes bibliographical references.
|
Page generated in 0.0587 seconds