1 |
Observations on the structure, ultrastructure and physiology of the trypanorhynch tapeworm Grillotia erinaceusWard, S. M. January 1986 (has links)
No description available.
|
2 |
Modelagem e simulação do sistema neuromuscular responsável pelo controle do torque gerado na articulação do tornozelo. / Modeling and simulation of the neuromuscular system involved in the control of the ankle joint torque.Elias, Leonardo Abdala 19 August 2013 (has links)
O estudo do controle neurofisiológico do movimento tem sido realizado sob várias perspectivas. Experimentos com seres humanos são realizados durante a execução de uma dada tarefa motora e, frequentemente, mediante a aplicação de estímulos externos (elétrico, magnético ou mecânico) ao sistema neuromuscular. Estes experimentos fornecem uma grande quantidade de dados referentes ao funcionamento das redes neuronais e dos atuadores biomecânicos envolvidos nos procedimentos. Entretanto, alguns achados experimentais permanecem incompreensíveis, requerendo a utilização de outros recursos para elucidar quais mecanismos estão por trás dos resultados. Neste sentido, a modelagem matemática e a simulação computacional servem como parte importante destas ferramentas que são imprescindíveis para uma melhor compreensão dos mecanismos neurofisiológicos e biomecânicos por trás do controle do movimento. A presente tese de doutorado teve como objetivo prover um modelo neuromusculoesquelético biologicamente plausível capaz de investigar diferentes mecanismos responsáveis pelo controle do torque gerado na articulação do tornozelo. Este modelo teve como base um modelo neuromuscular previamente proposto, porém, que não incorporava uma série de elementos fundamentais para um estudo mais amplo do sistema motor. O novo modelo proposto contempla modelos de motoneurônios com dendritos ativos, proprioceptores musculares responsáveis pelas vias reflexas de curta e média latência, modelos que representam as características viscoelásticas dos músculos e um modelo biomecânico do ser humano durante a postura ereta quieta. O modelo foi aplicado a diferentes problemas relacionados ao funcionamento do sistema neuromusculoesquelético, que são tipicamente explorados por experimentos com seres humanos, e forneceu bases teóricas importantes para estes achados. / The neurophysiological control of movement has been studied from several standpoints. Human experiments are performed during the execution of a given motor task and, frequently, by applying an external stimulation (electrical, magnetic, or mechanical) to the neuromuscular system. These experiments provide a large amount of data concerning the functioning of the neuronal networks and biomechanical actuators involved in the procedures. Nonetheless, some experimental findings remain puzzling, so that other available resources should be used to clarify what mechanisms are behind these results. In this vein, the mathematical modeling and computer simulations are invaluable tools that may be used to better understand the neurophysiological and biomechanical mechanisms underlying the motor control. The present PhD thesis aimed at providing a biologically plausible neuromusculoskeletal model that was used to study different mechanisms involved in the control of the ankle joint torque. This model was based on a previous neuromuscular model, which did not employ several elements that are fundamental to a comprehensive evaluation of the motor system. The novel proposed model encompasses motor neuron models with active dendrites, muscle proprioceptors responsible for the short- and medium-latency reflex pathways, muscle models with the main viscoelastic features, and a biomechanical model of the human body during upright stance. It was applied to a series of problems frequently related to the functioning of the neuromusculoskeletal system and its main outcomes provided important theoretical bases for a set of experimental findings.
|
3 |
Modelagem e simulação do sistema neuromuscular responsável pelo controle do torque gerado na articulação do tornozelo. / Modeling and simulation of the neuromuscular system involved in the control of the ankle joint torque.Leonardo Abdala Elias 19 August 2013 (has links)
O estudo do controle neurofisiológico do movimento tem sido realizado sob várias perspectivas. Experimentos com seres humanos são realizados durante a execução de uma dada tarefa motora e, frequentemente, mediante a aplicação de estímulos externos (elétrico, magnético ou mecânico) ao sistema neuromuscular. Estes experimentos fornecem uma grande quantidade de dados referentes ao funcionamento das redes neuronais e dos atuadores biomecânicos envolvidos nos procedimentos. Entretanto, alguns achados experimentais permanecem incompreensíveis, requerendo a utilização de outros recursos para elucidar quais mecanismos estão por trás dos resultados. Neste sentido, a modelagem matemática e a simulação computacional servem como parte importante destas ferramentas que são imprescindíveis para uma melhor compreensão dos mecanismos neurofisiológicos e biomecânicos por trás do controle do movimento. A presente tese de doutorado teve como objetivo prover um modelo neuromusculoesquelético biologicamente plausível capaz de investigar diferentes mecanismos responsáveis pelo controle do torque gerado na articulação do tornozelo. Este modelo teve como base um modelo neuromuscular previamente proposto, porém, que não incorporava uma série de elementos fundamentais para um estudo mais amplo do sistema motor. O novo modelo proposto contempla modelos de motoneurônios com dendritos ativos, proprioceptores musculares responsáveis pelas vias reflexas de curta e média latência, modelos que representam as características viscoelásticas dos músculos e um modelo biomecânico do ser humano durante a postura ereta quieta. O modelo foi aplicado a diferentes problemas relacionados ao funcionamento do sistema neuromusculoesquelético, que são tipicamente explorados por experimentos com seres humanos, e forneceu bases teóricas importantes para estes achados. / The neurophysiological control of movement has been studied from several standpoints. Human experiments are performed during the execution of a given motor task and, frequently, by applying an external stimulation (electrical, magnetic, or mechanical) to the neuromuscular system. These experiments provide a large amount of data concerning the functioning of the neuronal networks and biomechanical actuators involved in the procedures. Nonetheless, some experimental findings remain puzzling, so that other available resources should be used to clarify what mechanisms are behind these results. In this vein, the mathematical modeling and computer simulations are invaluable tools that may be used to better understand the neurophysiological and biomechanical mechanisms underlying the motor control. The present PhD thesis aimed at providing a biologically plausible neuromusculoskeletal model that was used to study different mechanisms involved in the control of the ankle joint torque. This model was based on a previous neuromuscular model, which did not employ several elements that are fundamental to a comprehensive evaluation of the motor system. The novel proposed model encompasses motor neuron models with active dendrites, muscle proprioceptors responsible for the short- and medium-latency reflex pathways, muscle models with the main viscoelastic features, and a biomechanical model of the human body during upright stance. It was applied to a series of problems frequently related to the functioning of the neuromusculoskeletal system and its main outcomes provided important theoretical bases for a set of experimental findings.
|
4 |
Mécanismes neurophysiologiques de l'imagerie motrice : effet d'une stimulation somatosensorielle associée / Neurophysiological mechanisms of motor imagery : effects of associated somatosensory stimulationTraverse, Elodie 14 December 2018 (has links)
L’entrainement mental (EM) par imagerie motrice (IM), qui consiste à simuler mentalement une action sans production motrice, constitue un stimulus efficace pour l’amélioration de la force maximale volontaire. Si aucun retour afférent sensitif n’est présent au cours d’une tâche d’IM, il n’en reste pas moins qu’une activation du cortex somatosensoriel est reportée. En effet, l’efficacité de l’IM repose en partie sur une interaction entre les voies motrices et les voies sensitives. Ainsi, il apparait raisonnable de penser que l’ajout de retours afférents sensitifs pendant l’IM pourrait potentialiser les effets de cette dernière et donc améliorer la performance motrice. L’objectif de cette thèse était d’analyser les mécanismes nerveux impliqués dans l’imagerie motrice combinée à la stimulation somatosensorielle. Dans notre première étude, nous avons montré que l’ajout d’une stimulation somatosensorielle des afférences Ia pendant une tâche d’imagerie pouvait potentialiser l’excitabilité corticospinale. Notre deuxième étude n’a cependant pas permis de mettre en évidence une meilleure efficacité d’un entrainement en imagerie motrice combinée à la stimulation somatosensorielle comparativement à un entrainement par imagerie motrice ou par stimulation somatosensorielle seules sur la force maximale volontaire. Enfin, notre troisième étude suggère que cette apparente inefficacité de la stimulation somatosensorielle à potentialiser les effets de l’imagerie, pourrait être en partie liée à un conflit entre l’activation du réseau neuronal en imagerie et l’activation de mécanismes corticaux suite aux retours afférents induits par la SS. / Mental training, which involves mentally simulating an action without motor output, is an effective stimulus to improve the maximal voluntary contraction. If only the motor pathway is activated, an activation of the somatosensory cortex is observed despite the lack of afferent feedback. Indeed, the motor imagery task efficiency is based in part on an interaction between motor and sensory pathway. Thus, it’s seems reasonable to think that the addition of sensory afferent feedback during motor imagery could potentiate the motor imagery effects and thus improve motor performance. In our first study, we showed that the addition of somatosensory stimulation of Ia-afferents during a motor imagery task could potentiate corticospinal excitability. Our second study, however, did not show a better efficacy of a mental training combined with somatosensory stimulation compared to a mental training or a somatosensory stimulation training alone on the maximal voluntary contraction. Finally, our third study suggests that this apparent inefficiency of somatosensory stimulation to potentiate the effects of motor imagery may be partly related to a conflict between the activation of the neuronal network in imaging and the activation of cortical mechanisms following the afferents feedbacks induced by the somatosensory stimulation.
|
5 |
Acute Mechanisms of Skeletal Muscle Decline and Rehabilitative Recovery Following Ischemic StrokeBalch, Maria Helen Harley January 2020 (has links)
No description available.
|
Page generated in 0.0539 seconds