• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cilia Associated Signaling in Adult Energy Homeostasis

Bansal, Ruchi 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Primary cilia are solitary cellular appendages that function as signaling centers for cells in adult energy homeostasis. Here in chapter 1, I introduce cilia and how dysfunction of these conserved organelles results in ciliopathies, such as Bardet-Biedl Syndrome (BBS), which present with childhood obesity. Furthermore, conditional loss of primary cilia from neurons in the hypothalamus leads to hyperphagia and obesity in mouse models of ciliopathies. Classically, cilia coordinate signaling often through specific G-protein coupled receptors (GPCRs) as is the case in both vision and olfaction. In addition, neurons throughout the brain including hypothalamic neurons possess primary cilia whose dysfunction contributes to ciliopathy-associated obesity. How neuronal cilia regulate the signaling of GPCRs remains unclear and many fundamental cell biology questions remain about cilia mediated signaling. For example, how cilia coordinate signaling to influence neuronal activity is unknown. To begin to address some of these cell biology questions around neuronal cilia, chapter 2, describes the development and use of a system for primary neuronal cultures from the hypothalamus. Using this system, we found that activation of the cilia regulated hedgehog pathway, which is critical in development, influenced the ability of neurons to respond to GPCR ligands. This result highlights the role of the developmentally critical hedgehog pathway on terminally differentiated hypothalamic neurons. One challenge facing the cilia field is our ability to assess cilia in large numbers without potential bias. This is especially true in tissues like the brain, where cilia appear to have region-specific characteristics. Work included in Chapter 3 describes the use of a computer-assisted artificial intelligence (Ai) approach to analyze cilia composition and morphology in a less biased and high throughput manner. Cilia length and intensities are important parameters for evaluation of cilia signaling. Evidence suggests that activation of some ciliary GPCRs results in shortening of cilia whereas deviations from normal cilia length in mutant phenotypes affects normal physiological processes such as decreased mucociliary clearance. Therefore, to analyze a large number of cilia, we describe the use of the Ai module from in vitro and in vivo samples in a reproducible manner that minimizes user bias. Using this approach, we identified that Mchr1 expression is significantly stronger in the cilia of paraventricular nucleus than that in the arcuate nucleus of adult mice. Work in Chapter 4 continues to explore the integration between hedgehog pathway and ciliary GPCR signaling in the central nervous system, and its relevance with energy homeostasis. We evaluated the hedgehog ligand in the plasma of mice in acute and long-term metabolic changes and identified that the activity of the ligand changed under altered metabolic conditions. We also developed a genetic mouse model where hedgehog signaling was constitutively active in neuronal cilia. These mice become hyperphagic and obese. These results further emphasize the potential role of the hedgehog signaling pathway in regulation of feeding behavior in adult vertebrates. Overall, results from this work will provide a better understanding of the defects not only underlying ciliopathy-associated obesity but may also reveal more common mechanisms of centrally mediated obesity. In addition, the tools I have developed will help in understanding how neuronal cilia are used for intercellular communications and ultimately how they regulate behaviors like feeding.
2

Cilia Associated Signaling In Adult Energy Homeostasis

Ruchi Bansal (12476844) 28 April 2022 (has links)
<p>  </p> <p>Cilia are cell appendages that sense our environment and are critical in cell-to-cell communication. Dysfunction of cilia can result in several disease states including obesity. While cilia in the brain are known to be important for feeding behavior, it is unclear how they regulate energy homeostasis. Classically, cilia coordinate signaling through surface receptors called G-protein coupled receptors (GPCRs). For example, cilia mediated GPCR signaling is critical for both our senses of vision and smell. How cilia regulate the signaling of GPCRs in other areas of the body including the brain is only now emerging. To answer cell biology questions around cilia mediated GPCR signaling in neurons, we developed a system for primary neuronal cultures. We discovered that the cilia mediated hedgehog pathway influences the ability of neurons to respond to GPCR ligands. For the first time, this result highlights the role of the hedgehog pathway in neurons. We continue to explore how cilia integrate the hedgehog pathway and GPCR signaling in the central nervous system, and the potential connections to energy homeostasis. We discovered that hedgehog pathway activity in feeding centers of the brain changes based upon feeding conditions like fasting. We also learned that activating the hedgehog pathway in these brain regions is sufficient to cause obesity in mice. These novel results highlight an unrecognized role for the hedgehog pathway in the regulation of feeding behavior. Overall, this work provides a better understanding of ciliopathy associated obesity and may reveal more common mechanisms of obesity in the general population. In addition, this work implicates the hedgehog pathway in regulating behaviors and new modes of cell-cell communication within the central nervous system.</p>

Page generated in 0.1087 seconds