Spelling suggestions: "subject:"neuroprosthesis"" "subject:"periprosthetic""
1 |
Spatially selective activation of peripheral nerve for neuroprosthetic applicationsGrill, Warren Murray, Jr. January 1995 (has links)
No description available.
|
2 |
Non-Penetrating Microelectrode Interfaces for Cortical Neuroprosthetic Applications with a Focus on Sensory Encoding: Feasibility and Chronic Performance in Striate CortexJanuary 2018 (has links)
abstract: Growing understanding of the neural code and how to speak it has allowed for notable advancements in neural prosthetics. With commercially-available implantable systems with bi- directional neural communication on the horizon, there is an increasing imperative to develop high resolution interfaces that can survive the environment and be well tolerated by the nervous system under chronic use. The sensory encoding aspect optimally interfaces at a scale sufficient to evoke perception but focal in nature to maximize resolution and evoke more complex and nuanced sensations. Microelectrode arrays can maintain high spatial density, operating on the scale of cortical columns, and can be either penetrating or non-penetrating. The non-penetrating subset sits on the tissue surface without puncturing the parenchyma and is known to engender minimal tissue response and less damage than the penetrating counterpart, improving long term viability in vivo. Provided non-penetrating microelectrodes can consistently evoke perception and maintain a localized region of activation, non-penetrating micro-electrodes may provide an ideal platform for a high performing neural prosthesis; this dissertation explores their functional capacity.
The scale at which non-penetrating electrode arrays can interface with cortex is evaluated in the context of extracting useful information. Articulate movements were decoded from surface microelectrode electrodes, and additional spatial analysis revealed unique signal content despite dense electrode spacing. With a basis for data extraction established, the focus shifts towards the information encoding half of neural interfaces. Finite element modeling was used to compare tissue recruitment under surface stimulation across electrode scales. Results indicated charge density-based metrics provide a reasonable approximation for current levels required to evoke a visual sensation and showed tissue recruitment increases exponentially with electrode diameter. Micro-scale electrodes (0.1 – 0.3 mm diameter) could sufficiently activate layers II/III in a model tuned to striate cortex while maintaining focal radii of activated tissue.
In vivo testing proceeded in a nonhuman primate model. Stimulation consistently evoked visual percepts at safe current thresholds. Tracking perception thresholds across one year reflected stable values within minimal fluctuation. Modulating waveform parameters was found useful in reducing charge requirements to evoke perception. Pulse frequency and phase asymmetry were each used to reduce thresholds, improve charge efficiency, lower charge per phase – charge density metrics associated with tissue damage. No impairments to photic perception were observed during the course of the study, suggesting limited tissue damage from array implantation or electrically induced neurotoxicity. The subject consistently identified stimulation on closely spaced electrodes (2 mm center-to-center) as separate percepts, indicating sub-visual degree discrete resolution may be feasible with this platform. Although continued testing is necessary, preliminary results supports epicortical microelectrode arrays as a stable platform for interfacing with neural tissue and a viable option for bi-directional BCI applications. / Dissertation/Thesis / Doctoral Dissertation Biomedical Engineering 2018
|
3 |
Intracortical Microstimulation of Somatosensory Cortex: Functional Encoding and Localization of Neuronal RecruitmentJanuary 2013 (has links)
abstract: Intracortical microstimulation (ICMS) within somatosensory cortex can produce artificial sensations including touch, pressure, and vibration. There is significant interest in using ICMS to provide sensory feedback for a prosthetic limb. In such a system, information recorded from sensors on the prosthetic would be translated into electrical stimulation and delivered directly to the brain, providing feedback about features of objects in contact with the prosthetic. To achieve this goal, multiple simultaneous streams of information will need to be encoded by ICMS in a manner that produces robust, reliable, and discriminable sensations. The first segment of this work focuses on the discriminability of sensations elicited by ICMS within somatosensory cortex. Stimulation on multiple single electrodes and near-simultaneous stimulation across multiple electrodes, driven by a multimodal tactile sensor, were both used in these experiments. A SynTouch BioTac sensor was moved across a flat surface in several directions, and a subset of the sensor's electrode impedance channels were used to drive multichannel ICMS in the somatosensory cortex of a non-human primate. The animal performed a behavioral task during this stimulation to indicate the discriminability of sensations evoked by the electrical stimulation. The animal's responses to ICMS were somewhat inconsistent across experimental sessions but indicated that discriminable sensations were evoked by both single and multichannel ICMS. The factors that affect the discriminability of stimulation-induced sensations are not well understood, in part because the relationship between ICMS and the neural activity it induces is poorly defined. The second component of this work was to develop computational models that describe the populations of neurons likely to be activated by ICMS. Models of several neurons were constructed, and their responses to ICMS were calculated. A three-dimensional cortical model was constructed using these cell models and used to identify the populations of neurons likely to be recruited by ICMS. Stimulation activated neurons in a sparse and discontinuous fashion; additionally, the type, number, and location of neurons likely to be activated by stimulation varied with electrode depth. / Dissertation/Thesis / Videos of neuronal recruitment / Ph.D. Bioengineering 2013
|
4 |
Non-Linear Adaptive Bayesian Filtering for Brain Machine InterfacesLi, Zheng January 2010 (has links)
<p>Brain-machine interfaces (BMI) are systems which connect brains directly to machines or computers for communication. BMI-controlled prosthetic devices use algorithms to decode neuronal recordings into movement commands. These algorithms operate using models of how recorded neuronal signals relate to desired movements, called models of tuning. Models of tuning have typically been linear in prior work, due to the simplicity and speed of the algorithms used with them. Neuronal tuning has been shown to slowly change over time, but most prior work do not adapt tuning models to these changes. Furthermore, extracellular electrical recordings of neurons' action potentials slowly change over time, impairing the preprocessing step of spike-sorting, during which the neurons responsible for recorded action potentials are identified.</p>
<p></p>
<p>This dissertation presents a non-linear adaptive Bayesian filter and an adaptive spike-sorting method for BMI decoding. The adaptive filter consists of the n-th order unscented Kalman filter and Bayesian regression self-training updates. The unscented Kalman filter estimates desired prosthetic movements using a non-linear model of tuning as its observation model. The model is quadratic with terms for position, velocity, distance from center of workspace, and velocity magnitude. The tuning model relates neuronal activity to movements at multiple time offsets simultaneously, and the movement model of the filter is an order n autoregressive model.</p>
<p>To adapt the tuning model parameters to changes in the brain, Bayesian regression self-training updates are performed periodically. Tuning model parameters are stored as probability distributions instead of point estimates. Bayesian regression uses the previous model parameters as priors and calculates the posteriors of the regression between filter outputs, which are assumed to be the desired movements, and neuronal recordings. Before each update, filter outputs are smoothed using a Kalman smoother, and tuning model parameters are passed through a transition model describing how parameters change over time. Two variants of Bayesian regression are presented: one uses a joint distribution for the model parameters which allows analytical inference, and the other uses a more flexible factorized distribution that requires approximate inference using variational Bayes.</p>
<p>To adapt spike-sorting parameters to changes in spike waveforms, variational Bayesian Gaussian mixture clustering updates are used to update the waveform clustering used to calculate these parameters. This Bayesian extension of expectation-maximization clustering uses the previous clustering parameters as priors and computes the new parameters as posteriors. The use of priors allows tracking of clustering parameters over time and facilitates fast convergence.</p>
<p>To evaluate the proposed methods, experiments were performed with 3 Rhesus monkeys implanted with micro-wire electrode arrays in arm-related areas of the cortex. Off-line reconstructions and on-line, closed-loop experiments with brain-control show that the n-th order unscented Kalman filter is more accurate than previous linear methods. Closed-loop experiments over 29 days show that Bayesian regression self-training helps maintain control accuracy. Experiments on synthetic data show that Bayesian regression self-training can be applied to other tracking problems with changing observation models. Bayesian clustering updates on synthetic and neuronal data demonstrate tracking of cluster and waveform changes. These results indicate the proposed methods improve the accuracy and robustness of BMIs for prosthetic devices, bringing BMI-controlled prosthetics closer to clinical use.</p> / Dissertation
|
5 |
Hydrogel-Electrospun Fiber Mat Composite Materials for the Neuroprosthetic InterfaceHan, Ning January 2010 (has links)
No description available.
|
Page generated in 0.0865 seconds