Spelling suggestions: "subject:"immunoproteomics"" "subject:"glycoproteomics""
1 |
Advances for Biomarker Discovery in Neuroproteomics using Mass Spectrometry : From Method Development to Clinical ApplicationSjödin, Marcus O.D. January 2012 (has links)
Proteins offer a prominent group of compounds which may be ubiquitously affected in disease and used as biomarkers for early diagnosis, assessing treatment or drug development. Clinical proteomics aim to screen for protein biomarkers by a comprehensive analysis of all proteins expressed in a biological matrix during a certain pathology. Characterization of thousands of proteins in a complex biological matrix is from an analytical point of view a challenging task. Hence, sophisticated methods that are sensitive, specific and robust in a high-throughput manner are required. Mass spectrometry (MS) is able to perform this to a wide extent is. A prominent source for finding protein biomarkers related to neurological diseases is the central nervous system (CNS) due to close proximity of the pathogenesis. Neuroproteomic analysis of CNS tissue samples is thus likely to reveal novel biomarkers. Cerebrospinal fluid (CSF) bathes the entire CNS and offers a good balance between clinical implementation and usefulness. Both matrices put further requirements on the methodology due to a high dynamic range, low protein concentration and limited sample amount. The central objective of this thesis was to develop, assess and utilize analytical methods to be used in combination with MS to enable protein biomarker discovery in the CNS. The use of hexapeptide ligand libraries was exemplified on CSF from patients with traumatic brain injury and demonstrated the ability to compress the dynamic range to enable protein profiling in the order of mg/mL to pg/mL. Further, a method based on cloud-point extraction was developed for simultaneous enrichment and fractionation of hydrophobic/hydrophilic proteins in brain tissue. Comparison between label and label-free MS based strategies were carried out, mimicking the true conditions with a few differentially expressed proteins and a bulk of proteins occurring in unchanged ratio. Finally, a clinical application was carried out to explore the molecular mechanism underlying the analgesic effect of spinal cord stimulation (SCS) in patients with neuropathic pain. The CSF concentration of Lynx1 was found to increase upon SCS. Lynx1, acting as a specific modulator of the cholinergic system in the CNS, may act as a potential important molecular explanation of SCS-induced analgesia.
|
2 |
Development of Sandwich Assays for Potential Protein Biomarkers in Neurodegenerative DiseasesYousef, Jamil January 2020 (has links)
As the aging population is increasing worldwide, so is the prevalence of neurodegenerativediseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), frontotemporal dementia(FTD) and amyotrophic lateral sclerosis (ALS). Reliable biomarkers able to aid the diagnosis anddifferentiation of these diseases are needed in order to start the right treatment as early as possible.Due to its representative state of the central nervous system, cerebrospinal fluid (CSF) is afavorable sample material for biomarker discovery within neurodegenerative diseases. Alteredprotein levels of this body fluid might serve as a biomarker, but further validation of earlierfindings is needed. The aim of this project was to validate earlier studies suggesting potentialprotein biomarkers in CSF. From a list of 80 potential biomarkers in the CSF of patient samples,eight were chosen to be included in this validation effort. By utilizing a suspension bead array ina sandwich assay setup, 21 antibodies were tested in an initial screening. Antibody pairs that couldmeasure the protein levels in a dilution dependent manner was further optimized before individualpatient samples were analyzed. Sandwich assays targeting the three proteins Amphiphysin(AMPH), Chitotriosidase-1 (CHIT1) and Beta-synuclein (SNCB) were successfully developed andcorrelated to earlier generated data using a suspension bead array with a single binder setup.Therefore, the earlier findings of elevated levels of AMPH and SNCB in AD patients and CHIT1in ALS patients were successfully validated. / Prevalensen av neurodegenerativa sjukdomar såsom Alzheimers sjukdom (AD), Parkinsonssjukdom (PD), frontallobsdemens (FTD) och amyotrofisk lateralskleros (ALS) ökar i takt med denåldrande populationen. Pålitliga biomarkörer som kan hjälpa till vid diagnostiseringen av dessasjukdomar behövs för att starta rätt behandling så tidigt som möjligt. Ryggmärgsvätska, enkroppsvätska tillhörande det centrala nervsystemet, kan ge en inblick i det centrala nervsystemetstillstånd. Förändrade proteinnivåer i denna kroppsvätska skulle därför kunna fungera sombiomarkörer. Målet i detta projekt var att validera tidigare föreslagna proteinbiomarkörer iryggmärgsvätska. Utifrån en lista av 80 tidigare analyserade proteiner i ryggmärgsvätska hospatienter, inkluderades åtta proteiner i detta valideringsförsök. En antikroppsbaserad så kalladsandwich assay användes i en suspension bead array för att testa 21 stycken antikroppar i ett initialtscreeningsförsök. Antikroppspar som kunde mäta proteinnivåer på ett spädningsberoende vis i detinitiala screeningsförsöket optimerades vidare innan den utvecklade sandwich assayn användes föratt analysera proteinnivåer i individuella prover. Sandwich assays gentemot Amphiphysin(AMPH), Chitotriosidase-1 (CHIT1) och Beta-synuclein (SNCB) kunde bli framtagna ochkorrelerade gentemot tidigare genererat data från en single binder assay på ett framgångsrikt sätt.Projektet kunde därmed validera tidigare fynd som indikerat förhöjda nivåer av AMPH och SNCBi AD patienter, samt förhöjda nivåer av CHIT1 i ALS patienter.
|
Page generated in 0.0685 seconds