• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Functional significance of human sensory ERPs : insights from modulation by preceding events

Wang, Anli January 2010 (has links)
The electroencephalogram (EEG) reflects summated, slow post-synaptic potentials of cortical neurons. Sensory, motor or cognitive events (such as a fast-rising sensory stimulus, a brisk self-paced movement or a stimulus-triggered cognitive task) can elicit transient changes in the ongoing human EEG, called event-related potentials (ERPs). ERPs are widely used in clinical practice, and believed to reflect the activity of the sensory system activated by the stimulus (for example, laser-evoked potentials are used to substantiate the neuropathic nature of clinical pain conditions). When ERPs are elicited by pairs or trains of stimuli delivered at short inter-stimulus intervals (ISIs), the magnitude of the ERP elicited by the repeated stimuli is markedly reduced, a phenomenon known as response decrement. While the interval between two consecutive stimuli becomes longer, the reduced response is recovered. Thus, this phenomenon has been traditionally interpreted in terms of neural refractoriness of generators of ERPs ("neural refractoriness hypothesis"). This thesis, however, challenges this neural refractoriness hypothesis by describing the results of manipulating the preceding events of the eliciting stimulus. The first study examined the effect of variable and short ISIs on sensory ERPs, delivering trains of auditory and electrical stimuli with random ISIs ranging from 100 to 1000ms. In the second study, pairs of laser stimuli were presented in two comparable conditions. In the constant condition, the ISI was identical across trials in each block, while in the variable condition, the ISI was variable across trials. By directly comparing ERPs elicited by laser stimulation, this study aimed to explore whether lack of saliency in the eliciting stimulus could explain the response decrement during stimulus repetition. Finally, the third study tested the hypothesis that the reduced eliciting ERPs would recover if saliency were introduced by changing the modality of the preceding event. Thus, trains of three stimuli (S1-S2-S3) with 1s ISI were presented; S2 was either same or different in modality as S1 and S3 in each block. Results from these three experiments demonstrate that this "refractoriness hypothesis" does not hold, and suggest that the magnitude of ERPs is only partly related to the magnitude of the incoming sensory input, and instead largely reflects neural activities triggered by salient events in the sensory environment. These results are important for the correct interpretation of ERPs in both physiological and clinical studies.
2

Tfap2b acts in GABAergic neurons to control sleep in mice

Hu, Yang, Bringmann, Henrik 06 November 2024 (has links)
Sleep is a universal state of behavioral quiescence in both vertebrates and invertebrates that is controlled by conserved genes. We previously found that AP2 transcription factors control sleep in C. elegans, Drosophila, and mice. Heterozygous deletion of Tfap2b, one of the mammalian AP2 paralogs, reduces sleep in mice. The cell types and mechanisms through which Tfap2b controls sleep in mammals are, however, not known. In mice, Tfap2b acts during early embryonic stages. In this study, we used RNA-seq to measure the gene expression changes in brains of Tfap2b−/− embryos. Our results indicated that genes related to brain development and patterning were differentially regulated. As many sleep-promoting neurons are known to be GABAergic, we measured the expression of GAD1, GAD2 and Vgat genes in different brain areas of adult Tfap2b+/− mice using qPCR. These experiments suggested that GABAergic genes are downregulated in the cortex, brainstem and cerebellum areas, but upregulated in the striatum. To investigate whether Tfap2b controls sleep through GABAergic neurons, we specifically deleted Tfap2b in GABAergic neurons. We recorded the EEG and EMG before and after a 6-h period of sleep deprivation and extracted the time spent in NREM and in REM sleep as well as delta and theta power to assess NREM and REM sleep, respectively. During baseline conditions, Vgat-tfap2b−/− mice exhibited both shortened NREM and REM sleep time and reduced delta and theta power. Consistently, weaker delta and theta power were observed during rebound sleep in the Vgat-tfap2b−/− mice after sleep deprivation. Taken together, the results indicate that Tfap2b in GABAergic neurons is required for normal sleep.
3

The effects of volitional breathing and carbon dioxide inhalation on human local field potentials

Ahmad Bahuri, Nor Faizal January 2014 (has links)
Breathing is an automatic process that we hardly pay any attention to in our daily life. As a social species, we interact using body movement, speech and emotion and these actions require modification of the respiratory pattern. While we understood how the respiratory rhythm is generated, we do not have clear evidence on how higher cortical signals modulate the respiratory pattern. The deep cortical structures in the human brain are inaccessible under normal circumstances, and deep brain stimulation electrode recordings offer an opportunity to understand the neurophysiological interactions ofdeeper brain structures. In this thesis, I investigated deep brain stimulation recordings from implanted electrodes in chronic neuropathic pain subjects in the right and left anterior cingulate cortices, the ventral posterior lateral nucleus of the thalamus and periventricular gray region. The objectives of this research were to elucidate the feed-forward mechanisms of volitional breathing, cortical autonomic regulation, and to investigate whether any of the investigated nuclei haveany carbon dioxide-sensitive neurons which may encode respiratory sensation. The results show lateralisation of the cortical autonomic control whereby the left anterior cingulate exhibits increases in beta band activity (30 to 90 Hz) with cognition and vocalisation tasks. Meanwhile, right anterior cingulate activity increases with hyperoxia. Respiration using various carbon dioxide concentrations shows a constant rise in the alpha band (8 to 14 Hz) activity in the PVG which suggests a sensitive, nonspecific neuronal activity related to systemic carbon dioxide levels.
4

The emergence of visual responses in the developing retinotectal system in vivo

Van Rheede, Joram Jacob January 2013 (has links)
Patterned neuronal activity driven by the sensory environment plays a key role in the development of precise synaptic connectivity in the brain. It is well established that the action potentials (‘spikes’) generated by individual neurons are crucial to this developmental process. A neuron’s spiking activity is jointly determined by its synaptic inputs and its intrinsic excitability. It is therefore important to ask how a neuron develops these attributes, and whether the emergence of spiking might itself be governed by activity-dependent processes. In this thesis, I address these questions in the retinotectal system of Xenopus laevis. First, I investigate the extent to which visuospatial information is available to the developing retinotectal system. I show that the eyes of developing Xenopus larvae are hyperopic at the onset of vision, but rapidly grow towards correct vision. Despite its imperfect optics, the Xenopus eye is able to generate spatially restricted activity on the retina, which is evident in the spatial structure of the receptive fields (RFs) of tectal neurons. Using a novel method to map the visually driven spiking output and synaptic inputs of the same tectal neuron in vivo, I show that neuronal spiking activity closely follows the spatiotemporal profile of glutamatergic inputs. Next, I characterise a population of neurons in the developing optic tectum that does not fire action potentials, despite receiving visually evoked glutamatergic and γ-aminobutyric acid (GABA)ergic synaptic inputs. A comparison of visually spiking and visually non-spiking neurons reveals that the principal reason these neurons are ‘silent’ is that they lack sufficient glutamatergic synaptic excitation. In the final section of the thesis, I investigate whether visually driven activity can play a role in the ‘unsilencing’ of these silent neurons. I show that non-spiking tectal neurons can be rapidly converted into spiking neurons through a visual conditioning protocol. This conversion is associated with a selective increase in glutamatergic input and implicates a novel, spike-independent form of synaptic potentiation. I provide evidence that this novel plasticity process is mediated by GABAergic inputs that are depolarising during early development, and can act in synergy with N-methyl-D-aspartate receptors (NMDARs) to strengthen immature glutamatergic synapses. Consistent with this, preventing the depolarising effects of GABA or blocking NMDARs abolished the activity-dependent unsilencing of tectal neurons. These results therefore support a model in which GABAergic and glutamatergic transmitter systems function synergistically to enable a neuron to recruit the synaptic excitation it needs to develop sensory-driven spiking activity. This represents a transition with important consequences for both the functional output and the activity-dependent development of a neuron.

Page generated in 0.0908 seconds