• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 203
  • 85
  • 31
  • 18
  • 7
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • Tagged with
  • 413
  • 182
  • 151
  • 88
  • 70
  • 56
  • 52
  • 52
  • 52
  • 50
  • 43
  • 36
  • 33
  • 32
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Flow of a non-Newtonian Bingham plastic fluid over a rotating disk

Rashaida, Ali A 19 August 2005 (has links)
Even though fluid mechanics is well developed as a science, there are many physical phenomena that we do not yet fully understand. One of these is the deformation rates and fluid stresses generated in a boundary layer for a non-Newtonian fluid. One such non-Newtonian fluid would be a waxy crude oil flowing in a centrifugal pump. This type of flow can be numerically modeled by a rotating disk system, in combination with an appropriate constitutive equation, such as the relation for a Bingham fluid. A Bingham fluid does not begin to flow until the stress magnitude exceeds the yield stress. However, experimental measurements are also required to serve as a database against which the results of the numerical simulation can be interpreted and validated. The purpose of the present research is to gain a better understanding of the behavior of a Bingham fluid in the laminar boundary layer on a rotating disk. For this project, two different techniques were employed: numerical simulation, and laboratory investigations using Particle Image Velocimetry (PIV) and flow visualization. Both methods were applied to the flow of a Bingham fluid over a rotating disk. In the numerical investigations, the flow was characterized by the dimensionless yield stress Bingham number, By, which is the ratio of the yield and viscous stresses. Using von Kármáns similarity transformation, and introducing the rheological behavior of the fluid into the conservation equations, the corresponding nonlinear two-point boundary value problem was formulated. A solution to the problem under investigation was obtained by numerical integration of the set of Ordinary Differential Equations (ODEs) using a multiple shooting method. The influence of the Bingham number on the flow behavior was identified. It decreases the magnitude of the radial and axial velocity components, and increases the magnitude of the tangential velocity component, which has a pronounced effect on the moment coefficient, CM, and the volume flow rate, Q. In the laboratory investigations, since the waxy crude oils are naturally opaque, an ambitious experimental plan to create a transparent oil that was rheologically similar to the Amna waxy crude oil from Libya was developed. The simulant was used for flow visualization experiments, where a transparent fluid was required. To fulfill the demand of the PIV system for a higher degree of visibility, a second Bingham fluid was created and rheologically investigated. The PIV measurements were carried out for both filtered tap water and the Bingham fluid in the same rotating disk apparatus that was used for the flow visualization experiments. Both the axial and radial velocity components in the (r-z) plane were measured for various rotational speeds. Comparison between the numerical and experimental results for the axial and radial velocity profiles for water was found to be satisfactory. Significant discrepancies were found between numerical results and measured values for the Bingham fluid, especially at low rotational speeds, mostly relating to the formation of a yield surface within the tank. Even though the flow in a pump is in some ways different from that of a disk rotating in a tank, some insight about the behavior of the pump flow can be drawn. One conclusion is that the key difference between the flow of a Bingham fluid in rotating equipment from that of a Newtonian fluid such as water relates to the yield surface introduced by the yield stress of the material, which causes an adverse effect on the performance and efficiency of such equipment.
112

Investigation into the dispensing-based fabrication process for tissue scaffolds

Ke, Hui David 30 August 2006 (has links)
Tissue engineering is a multidisciplinary subject aimed at producing the immunologically tolerant artificial tissues/organs to repair or replace damaged ones. In this field, tissue scaffold plays a key role to support cell growth and new tissue regeneration. For fabrication of tissue scaffolds with individual external geometry and predefined inner structure, rapid prototyping (RP) systems based on fluid dispensing techniques have proved to be very promising. The present research conducted a comprehensive study on the dispensing-based fabrication process. <p>First of all, the scaffold materials are characterized in terms of their biocompatibility and flow behaviour. The biocompatibility of biomaterials of PLLA, PCL, collagen, chitosan, and gelatine is evaluated in terms of supporting neuron cells adhesion and outgrowth. Chitosan solution (2% w/v) in acetic acid is shown to be the most promising among the examined biomaterials for the fabrication of nerve tissue scaffolds. Its non-Newtonian flow behaviour is identified by using a commercial rheometer. <p>In the fabrication process, the flow rate of biomaterials dispensed, the profile of strand cross-sections, and the scaffold porosity are very important and must be precisely controlled. A model is developed to represent the flow rate of biomaterials dispensed under the assumptions that the flow is incompressible, steady, laminar, and axisymmetric. Also, the profile and size of line strands at different layers and portions are modeled based on the Young-Laplace equation. Thus the dispensing-based fabrication process can be predicted in terms of the flow rate and the scaffold porosity. <p>The effects of operation conditions on the fabrication result are identified theoretically and experimentally. Simulation result shows that a higher driving pressure, a higher temperature, and a larger needle diameter will result in a larger size of the strand cross-sections and lower scaffold porosity. The change pattern, however, is nonlinear, which is affected by the fluid surface tension and non-Newtonian flow behaviour of scaffold biomaterials. <p>To verify the effectiveness of the developed models, experiments were carried out on a commercial dispensing system (C-720, Asymtek, USA). To avoid the possible error derived from the temperature difference between the dispensing system and the rheometer, a new method is presented to characterize the fluid properties used for model predictions. Experimental results illustrate that the developed models, combined with the new identification method, are very promising to predict the dispensing-based fabrication process.
113

Modeling of positive-displacement dispensing process

Kai, Jun 01 April 2008 (has links)
Fluid dispensing is a method by which fluid materials are delivered to the targeted boards in a controlled manner and has been extensively applied in various packaging processes in the electronics assembly industry. In these processes, the flow rate of the fluid dispensed and/or the fluid amount transferred onto a board are two important performance indexes. Due to the involvement of the compressibility and non-Newtonian behaviour of the fluid being dispensed, modeling the fluid dispensing process has proven to be a challenging task. This thesis presents a study on the modeling of the positive displacement dispensing process, in which the linear displacement of a piston is used to dispense fluid. Also, this thesis presents an evaluation of different designs of the fluid dispensing system based on the axiomatic design principles. <p>At first, the characterization of the flow behaviour of fluids used in the electronic packaging industry is addressed. Based on the previous experiments conducted in the authors lab, a 3-parameter Carreau model for the fluid Hysol FP4451 is derived for use in the present study. Then, taking into account fluid compressibility and flow behaviour, a model is developed to represent the dynamics of the flow rate of the fluid dispensed. The resulting model suggests that the dynamics of the flow rate in the positive displacement dispensing process is equivalent to that of a second order system. Based on the model developed, the influences of the fluid compressibility and the process parameters such as the dispensing time and needle temperature are investigated by simulations. <p>In the positive dispensing process, it is noticed that the fluid amount dispensed out of needle is different from the fluid amount finally transferred to the board, if the fluid amount dispensed is very small. This difference is considered one major problem affecting dispensing performance. In order to determine the fluid amount transferred to the board, a 3-step method is developed in the present study, based on existing theories of liquid bridges and Laplaces equation. Simulations are conducted based on the developed method to study the influence of surface tension and initial fluid amount on the final fluid amount transferred onto the board. <p> Finally, this thesis presents a new approach to evaluate and compare different designs of the fluid dispensing system, namely air-pressure, rotary-crew, and positive- displacement. In this approach, the axiomatic design principles, i.e., the Independence Axiom and the Information Axiom, are employed. This approach can be used not only to evaluate existing dispensing systems, but also to design new dispensing systems.
114

Flow and Pressure Drop of Highly Viscous Fluids in Small Aperture Orifices

Bohra, Lalit Kumar 09 July 2004 (has links)
A study of the pressure drop characteristics of the flow of highly viscous fluids through small diameter orifices was conducted to obtain a better understanding of hydraulic fluid flow loops in vehicles. Pressure drops were measured for each of nine orifices, including orifices of nominal diameter 0.5, 1 and 3 mm, and three thicknesses (nominally 1, 2 and 3 mm), and over a wide range of flow rates (2.86x10sup-7/sup Q 3.33x10sup-4/sup msup3/sup/s). The fluid under consideration exhibits steep dependence of the properties (changes of several orders of magnitude) as a function of temperature and pressure, and is also non-Newtonian at the lower temperatures. The data were non-dimensionalized to obtain Euler numbers and Reynolds numbers using non-Newtonian treatment. It was found that at small values of Reynolds numbers, an increase in aspect ratio (length/diameter ratio of the orifice) causes an increase in Euler number. It was also found that at extremely low Reynolds numbers, the Euler number was very strongly influenced by the Reynolds number, while the dependence becomes weaker as the Reynolds number increases toward the turbulent regime, and the Euler number tends to assume a constant value determined by the aspect ratio and the diameter ratio. A two-region (based on Reynolds number) model was developed to predict Euler number as a function of diameter ratio, aspect ratio, viscosity ratio and generalized Reynolds number. This model also includes data at higher temperatures (20 and le; T and le; 50supo/supC) obtained by Mincks (2002). It was shown that for such highly viscous fluids with non-Newtonian behavior at some conditions, accounting for the shear rate through the generalized Reynolds number resulted in a considerable improvement in the predictive capabilities of the model. Over the laminar, transition and turbulent regions, the model predicts 86% of the data within and plusmn25% for 0.32 l/d (orifice thickness/diameter ratio) 5.72, 0.023 and beta; (orifice/pipe diameter ratio) 0.137, 0.09 Resubge/sub 9677, and 0.0194 and mu;subge/sub 9.589 (kg/m-s)
115

Simulations of agitated dilute non-Newtonian suspensions

Sekyi, Elorm. January 2009 (has links)
Thesis (M. Sc.)--University of Alberta, 2009. / Title from pdf file main screen (viewed on Dec. 10, 2009). "A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Master of Science in Chemical Engineering, [Department of] Chemical and Materials Engineering, University of Alberta." Includes bibliographical references.
116

Parallel adaptive C¹ macro-elements for nonlinear thin film and non-Newtonian flow problems

Stogner, Roy Hulen, 1979- 06 September 2012 (has links)
This research deals with several novel aspects of finite element formulations and methodology in parallel adaptive simulation of flow problems. Composite macroelement schemes are developed for problems of thin fluid layers with deforming free surfaces or decomposing material phases; experiments are also run on divergence-free formulations that can be derived from the same element classes. The constrained composite nature and C¹ continuity requirements of these elements raises new issues, especially with respect to adaptive refinement patterns and the treatment of hanging node constraints, which are more complex than encountered with standard element types. This work combines such complex elements with these applications and with parallel adaptive mesh refinement and coarsening (AMR/C) techniques for the first time. The use of adaptive macroelement spaces also requires appropriate programming interfaces and data structures to enable easy and efficient implementation in parallel software. The algorithms developed for this work are implemented using object-oriented designs described herein. One application class of interest concerns heated viscous thin fluid layers that have a deformable free surface. These problems occur in both normal scale laboratory and industrial applications and in micro-fluidics. Modeling this flow via depth averaging gives a nonlinear boundary value problem describing the transient evolution of the film thickness. The model is dominated by surface tension effects which are described by a combination of nonlinear second and fourth-order operators. This research work also includes studies using the divergence-free forms constructed from these elements for certain classes of non-Newtonian fluids such as the Powell-Eyring and Williamson shear-thinning viscosity models. In addition to the target problems we conduct verification studies in support of the simulation development. In the final application investigated, C¹ elements are used in conforming finite element approximations of the Cahn-Hilliard phase field model for moving interface and phase separation problems. The nonlinear Cahn-Hilliard equation combines anti-diffusive configurational free energy based terms with a fourth-order interfacial free energy based term. Numerical studies include both manufactured and physically significant problems, including parametric studies of directed pattern self-assembly in phase decomposition of thin films. The main new contributions include construction of C¹ and div-free macroelement classes suitable for AMR/C with nonconforming hanging node meshes; a posteriori error estimation for fourth-order problems using these and other element classes; use of projection operators to automate the correct treatment of constraints at hanging nodes and through AMR/C steps; design of supporting data structures and algorithms for implementation in a parallel object oriented framework; variational formulations, methodology and numerical experiments with nonlinear fourth-order flow and transport models; and parametric and Monte Carlo studies of directed phase decomposition. / text
117

Commercial scale simulations of surfactant/polymer flooding

Yuan, Changli 25 October 2012 (has links)
The depletion of oil reserves and higher oil prices has made chemical enhanced oil recovery (EOR) methods more attractive in recent years. Because of geological heterogeneity, unfavorable mobility ratio, and capillary forces, conventional oil recovery (including water flooding) leaves behind much oil in reservoir, often as much as 70% OOIP (original oil in place). Surfactant/polymer flooding targets these bypassed oil left after waterflood by reducing water mobility and oil/water interfacial tension. The complexity and uncertainty of reservoir characterization make the design and implementation of a robust and effective surfactant/polymer flooding to be quite challenging. Accurate numerical simulation prior to the field surfactant/polymer flooding is essential for a successful design and implementation of surfactant/polymer flooding. A recently developed unified polymer viscosity model was implemented into our existing polymer module within our in-house reservoir simulator, the Implicit Parallel Accurate Reservoir Simulator (IPARS). The new viscosity model is capable of simulating not only the Newtonian and shear-thinning rheology of polymer solution but also the shear-thickening behavior, which may occur near the wellbore with high injection rates when high molecular weight Partially Hydrolyzed Acrylamide (HPAM) polymers are injected. We have added a full capability of surfactant/polymer flooding to TRCHEM module of IPARS using a simplified but mechanistic and user-friendly approach for modeling surfactant/water/oil phase behavior. The features of surfactant module include: 1) surfactant component transport in porous media; 2) surfactant adsorption on the rock; 3) surfactant/oil/water phase behavior transitioned with salinity of Type II(-), Type III, and Type II(+) phase behaviors; 4) compositional microemulsion phase viscosity correlation and 5) relative permeabilities based on the trapping number. With the parallel capability of IPARS, commercial scale simulation of surfactant/polymer flooding becomes practical and affordable. Several numerical examples are presented in this dissertation. The results of surfactant/polymer flood are verified by comparing with the results obtained from UTCHEM, a three-dimensional chemical flood simulator developed at the University of Texas at Austin. The parallel capability and scalability are also demonstrated. / text
118

Stability analysis and inertial regimes in complex  flows

Lashgari, Iman January 2015 (has links)
In this work we rst study the non-Newtonian effects on the inertial instabilities in shear flows and second the inertial suspensions of finite size rigid particles by means of numerical simulations. In the first part, both inelastic (Carreau) and elastic models (Oldroyd-B and FENE-P) have been employed to examine the main features of the non-Newtonian fluids in several congurations; flow past a circular cylinder, in a lid-driven cavity and in a channel. In the framework of the linear stability analysis, modal, non-modal, energy and sensitivity analysis are used to determine the instability mechanisms of the non-Newtonian flows. Signicant modifications/alterations in the instability of the different flows have been observed under the action of the non-Newtonian effects. In general, shear-thinning/shear-thickening effects destabilize/stabilize the flow around the cylinder and in a lid driven cavity. Viscoelastic effects both stabilize and destabilize the channel flow depending on the ratio between the viscoelastic and flow time scales. The instability mechanism is just slightly modied in the cylinder flow whereas new instability mechanisms arise in the lid-driven cavity flow. In the second part, we employ Direct Numerical Simulation together with an Immersed Boundary Method to simulate the inertial suspensions of rigid spherical neutrally buoyant particles in a channel. A wide range of the bulk Reynolds numbers, 500&lt;Re&lt;5000, and particle volume fractions, 0&lt;\Phi&lt;3, is studied while fixing the ratio between the channel height to particle diameter, 2h/d = 10. Three different inertial regimes are identied by studying the stress budget of two-phase flow. These regimes are laminar, turbulent and inertial shear-thickening where the contribution of the viscous, Reynolds and particle stress to transfer the momentum across the channel is the strongest respectively. In the inertial shear-thickening regime we observe a signicant enhancement in the wall shear stress attributed to an increment in particle stress and not the Reynolds stress. Examining the particle dynamics, particle distribution, dispersion, relative velocities and collision kernel, confirms the existence of the three regimes. We further study the transition and turbulence in the dilute regime of finite size particulate channel flow. We show that the turbulence can sustain in the domain at Reynolds numbers lower than the one of the unladen flow due to the disturbances induced by particles. / <p>QC 20151127</p>
119

Heat transfer studies on canned particulate Newtonian fluids subjected to axial agitation processing

Dwivedi, Mritunjay. January 2008 (has links)
Heat transfer to canned particulate laden Newtonian fluids was studied during free axial agitation thermal processing in a pilot STOCK retort which was modified to simulate the can motion in continuous turbo cookers. Evaluation of heat transfer coefficients (overall, U and fluid to particle, hfp) associated with canned liquid/particle mixtures, while they are subjected to free axial motion is difficult because of the problems involved with attaching temperature measuring devices to liquid and particles without affecting their normal motion. A new methodology was developed to evaluate U and hfp in Newtonian liquids. The methodology involved first correlating U and hfp as a function of input variables for cans in fixed axial mode of rotation in which both particle and fluid temperatures were measured using thin wire thermocouples. Subsequently, only liquid temperatures were measured in cans using wireless sensors in the free axial mode, and hfp values were empirically computed from the developed correlations and the measured temperatures. An L-16 orthogonal experimental design of experiment was carried out to select system and product parameters that significantly influence hfp and U for particles in the Newtonian liquid. With significant parameters selected, a response surface methodology and two full factorial experimental designs were used to relate U and hfp to process variables in each mode of rotation (fixed and free axial modes). / Dimensionless correlations were then developed using the evaluated data for heat transfer coefficients (U and hfp), in canned high viscosity Newtonian liquids (with and without particles) using stepwise multiple non-linear-regressions of significant dimensionless groups. In free axial mode, combining the natural and forced convection, Nu = A 1(GrxPr)A2+ A3(Re) A4 (Pr)A5 FrA 6 (rhop/rhop1)A 7 (e/100-e)A8 (dp/Dc) A9 (Kp/K1)A10 yielded a higher R2 (0.93) than using a pure forced convection model when particles were present in the can. Even in the absence of particles, and with the end-over-end mode of agitation where forced convection dominates, introducing natural convection term (GrxPr), improvedR2 from 0.81 to 0.97. Artificial neural network (ANN) models were also developed for heat transfer coefficient predictions and the trained models gave better predictions than dimensionless correlations. All ANN models developed could be implemented easily in a spreadsheet as either matrices or a set of equations.
120

Observation of laminar-turbulent transition of a yield stress fluid in Hagen-Poiseuille flow

Guzel, Bulent 05 1900 (has links)
The main focus of this work is to investigate experimentally the transition to turbulence of a yield stress shear thinning fluid in Hagen-Poiseuille flow. By combining direct high speed imaging of the flow structures with Laser Doppler Velocimetry (LDV), we provide a systematic description of the different flow regimes from laminar to fully turbulent. Each flow regime is characterized by measurements of the radial velocity, velocity fluctuations, and turbulence intensity profiles. In addition we estimate the autocorrelation, the probability distribution, and the structure functions in an attempt to further characterize transition. For all cases tested, our results indicate that transition occurs only when the Reynolds stresses of the flow equals or exceeds the yield stress of the fluid, i.e. the plug is broken before transition commences. Once in transition and when turbulent, the behavior of the yield stress fluid is somewhat similar to a (simpler) shear thinning fluid. We have also observed the shape of slugs during transition and find that their leading edges to be highly elongated and located off the central axis of the pipe, for the non-Newtonian fluids examined. Finally we present a new phenomenological approach for quantifying laminar-turbulent transition in pipe flow. This criterion is based on averaging a local Reynolds number to give ReG. Our localised parameter shows strong radial variations that are maximal at approximately the radial positions where puffs first appear during the first stages of turbulent transition.

Page generated in 0.036 seconds