• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 1
  • Tagged with
  • 14
  • 14
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fixed boundary extrusion with melt conditioning

Lakshmanan, Krishnan January 1981 (has links)
No description available.
2

Stability analysis and inertial regimes in complex  flows

Lashgari, Iman January 2015 (has links)
In this work we rst study the non-Newtonian effects on the inertial instabilities in shear flows and second the inertial suspensions of finite size rigid particles by means of numerical simulations. In the first part, both inelastic (Carreau) and elastic models (Oldroyd-B and FENE-P) have been employed to examine the main features of the non-Newtonian fluids in several congurations; flow past a circular cylinder, in a lid-driven cavity and in a channel. In the framework of the linear stability analysis, modal, non-modal, energy and sensitivity analysis are used to determine the instability mechanisms of the non-Newtonian flows. Signicant modifications/alterations in the instability of the different flows have been observed under the action of the non-Newtonian effects. In general, shear-thinning/shear-thickening effects destabilize/stabilize the flow around the cylinder and in a lid driven cavity. Viscoelastic effects both stabilize and destabilize the channel flow depending on the ratio between the viscoelastic and flow time scales. The instability mechanism is just slightly modied in the cylinder flow whereas new instability mechanisms arise in the lid-driven cavity flow. In the second part, we employ Direct Numerical Simulation together with an Immersed Boundary Method to simulate the inertial suspensions of rigid spherical neutrally buoyant particles in a channel. A wide range of the bulk Reynolds numbers, 500&lt;Re&lt;5000, and particle volume fractions, 0&lt;\Phi&lt;3, is studied while fixing the ratio between the channel height to particle diameter, 2h/d = 10. Three different inertial regimes are identied by studying the stress budget of two-phase flow. These regimes are laminar, turbulent and inertial shear-thickening where the contribution of the viscous, Reynolds and particle stress to transfer the momentum across the channel is the strongest respectively. In the inertial shear-thickening regime we observe a signicant enhancement in the wall shear stress attributed to an increment in particle stress and not the Reynolds stress. Examining the particle dynamics, particle distribution, dispersion, relative velocities and collision kernel, confirms the existence of the three regimes. We further study the transition and turbulence in the dilute regime of finite size particulate channel flow. We show that the turbulence can sustain in the domain at Reynolds numbers lower than the one of the unladen flow due to the disturbances induced by particles. / <p>QC 20151127</p>
3

Studies of nanoscale movements in fluids: oscillatory cantilevers and active micro-swimmers

Kara, Vural 10 March 2017 (has links)
As a result of recent advances in micro and nanotechnology, the tiny movements of nanoscale active and passive objects in fluids can be probed with ultrahigh sensitivity and time resolution. The overarching theme of this dissertation is to harness these movements in fluids in order to study fundamental fluid dynamics and develop novel biomedical devices. First, we use the oscillatory movements of nanocantilevers to investigate the scaling behavior of unsteady fluid flow. Here, our expansive experimental data and rigorous theoretical analysis suggest that a generalized scaling parameter combining the length and time scales of the flow governs the scaling. Second, we turn our attention to nanoscale movements of bacteria in a buffer. We develop a simple, robust and sensitive experimental method to detect and track the random movements of bacteria. Using this method, we show evidence that these random movements of bacteria correlate with their antibiotic susceptibility. In the first part of this thesis, we explore, through experimental and theoretical work, the breakdown of the Navier-Stokes equations in oscillatory fluid flows. The Navier-Stokes equations of hydrodynamics are based on two crucial assumptions. First, the fluid is approximated as a continuum, with a well-defined ``fluid particle." Second, the stress in the fluid is assumed to be a linear function of the rate-of-strain, resulting in a so-called Newtonian fluid. If a fluid such as an ideal gas is gradually rarefied, the Navier-Stokes equations begin to fail and a kinetic description of the flow becomes appropriate. The failure of the Navier-Stokes equations can be thought to take place via two different physical mechanisms: either the continuum hypothesis breaks down as a result of a finite size effect; or the local equilibrium is violated due to the high rate of strain. Our experimental approach is to create an unsteady flow by oscillating a finite-sized body in a gas and to measure the dissipation (or the drag force) acting on the body. By using micro and nanofabrication techniques, we independently tune the relevant linear dimensions and the frequencies of the oscillating bodies. We then measure the pressure-dependent dissipation of these micro/nano oscillators in three different gases, Helium, Nitrogen, and Argon. We observe that the scaling of the fluidic dissipation is governed by a subtle interplay between the length scale and the frequency, embodied respectively in the dimensionless Knudsen (Kn) and the Weissenberg ( Wi) numbers. We collapse all the experimental data using a single scaling parameter: Wi + Kn. This new dimensionless parameter, which can be regarded as a generalized Knudsen number, combines the relevant linear dimension and the frequency of the body; it is rooted in Galilean invariance and can be obtained rigorously from the Chapman-Enskog expansion of the Boltzmann equation. In the second part of the thesis, we turn to the movements of active micro-swimmers in a buffer. This portion of the work is motivated by a serious global public health problem: the rise of multi-drug resistant bacteria. One way to prevent this threat from growing is to treat bacterial infections with effective antibiotics using the minimum dosage. However, currently-used antibiotic susceptibility tests (ASTs), which determine whether or not bacterial isolates from a patient are susceptible to administered antibiotics, take too long. Here, we aim to develop a robust and rapid AST by exploiting a recently-observed microbiological phenomenon: various nanomechanical movements of bacteria subside promptly (within minutes) when the bacteria are exposed to an effective antibiotic. Our approach is to transduce bacterial movements into electrical voltage fluctuations in a microchannel filled with a buffer solution. When a small but constant current is driven through the microchannel, bacterial movements are converted into strong voltage fluctuations due to the fact that they modulate the effective microchannel diameter. Our experiments with E. coli show that the proposed detection method can provide antibiotic susceptibility results in ~1 hour, making it a promising rapid AST. Because this approach is based on a simple electrical measurement and does not require delicate process steps and instrumentation, it may eventually be used at the point of care. / 2019-03-09T00:00:00Z
4

Computer simulation studies of dense suspension rheology : computational studies of model sheared fluids : elucidation, interpretation and description of the observed rheological behaviour of simple colloidal suspensions in the granulo-viscous domain by non-equilibrium particulate dynamics

Hopkins, Alan John January 1989 (has links)
Rheological properties of idealised models which exhibit all the non-Newtonian flow phenomenology commonly seen in dense suspensions are investigated by particulate-dynamics computer-simulations. The objectives of these investigations are: (i) to establish the origins of various aspects of dense suspension rheology such as shear-thinning, shear thickening and dilatancy; (ii) to elucidate the different regions of a typical dense suspension rheogram by examining underlying structures and shear induced anisotropies in kinetic energy, diffusivity and pressure; (iii) to investigate the scaling of the simplest idealised model suspension; i.e. the hard-sphere model in Newtonian media and its relationship to the isokinetic flow curves obtained through non-equilibrium molecular dynamics (NEMD) simulations; (iv) to preliminarily determine the effect of perturbations present in all real colloidal suspensions, namely particle size polydispersity and a slight 'softness' of the interparticle potential. Non-equilibrium isokinetic simulations have been performed upon ;systems of particles interacting through the classical hard-sphere potential and a perturbation thereof, in which the hard-core is surrounded by a 'slightly soft' repulsive skin. The decision to base the present work upon isokinetic studies was made in order to obtain a better under- standing of suspension rheology by making a direct connection with previous NEMD studies of thermal systemst(93). These studies have shown that the non-linear behaviour exhibited by these systems under shear is atttributable to a shear-induced perturbation of the equilibrium phase behaviour. The present study shows this behaviour to correspond to the high shear region of the generalised suspension flow curve.
5

The Effect Of Non-Newtonian Rheology On Gas-Assisted Injection Molding Process

Wang, Yijie 06 August 2003 (has links)
No description available.
6

Computer simulation studies of dense suspension rheology. Computational studies of model sheared fluids; elucidation, interpretation and description of the observed rheological behaviour of simple colloidal suspensions in the granulo-viscous domain by Non-Equilibrium Particulate Dynamics.

Hopkins , Alan John January 1989 (has links)
Rheological properties of idealised models which exhibit all the non-Newtonian flow phenomenology commonly seen in dense suspensions are investigated by particulate-dynamics computer-simulations. The objectives of these investigations are: (i) to establish the origins of various aspects of dense suspension rheology such as shear-thinning, shear thickening and dilatancy; (ii) to elucidate the different regions of a typical dense suspension rheogram by examining underlying structures and shear induced anisotropies in kinetic energy, diffusivity and pressure; (iii) to investigate the scaling of the simplest idealised model suspension; i.e. the hard-sphere model in Newtonian media and its relationship to the isokinetic flow curves obtained through non-equilibrium molecular dynamics (NEMD) simulations; (iv) to preliminarily determine the effect of perturbations present in all real colloidal suspensions, namely particle size polydispersity and a slight 'softness' of the interparticle potential. Non-equilibrium isokinetic simulations have been performed upon ;systems of particles interacting through the classical hard-sphere potential and a perturbation thereof, in which the hard-core is surrounded by a 'slightly soft' repulsive skin. The decision to base the present work upon isokinetic studies was made in order to obtain a better under- standing of suspension rheology by making a direct connection with previous NEMD studies of thermal systemst(93). These studies have shown that the non-linear behaviour exhibited by these systems under shear is atttributable to a shear-induced perturbation of the equilibrium phase behaviour. The present study shows this behaviour to correspond to the high shear region of the generalised suspension flow curve. / Science and Engineering Research Council and Unilever Research
7

Water assisted injection moulding: development of insights and predictive capabilities through experiments on instrumented process in parallel with computer simulations.

Polynkin, A., Bai, L., Pittman, J.F.T., Sienz, J., Mulvaney-Johnson, Leigh, Brown, Elaine C., Dawson, A., Coates, Philip D., Brookshaw, B., Vinning, K., Butler, J. January 2008 (has links)
Yes / An idealised model of core-out in water assisted injection moulding (WAIM) is set up to isolate the effect of cooling by the water on the deposited layer thickness. Based on simulations, this is investigated for a specific case as a function of Pearson number and power law index. It is found that cooling significantly reduces the layer thickness to the extent that a change in the flow regime ahead of the bubble, from bypass to recirculating flow, is possible. For shear thinning melts with high temperature coefficient of viscosity, the simulations show very low layer thickness, which may indicate unfavourable conditions for WAIM. Although in the real moulding situation, other effects will be superimposed on those found here, the results provide new insights into the fundamentals of WAIM. Investigation of other effects characterised by Fourier and Reynolds numbers will be reported subsequently. Some early process measurement results from an experimental WAIM mould are presented. Reductions in residual wall thickness are observed as the water injection set pressure is increased and the duration of water bubble penetration through the melt is determined experimentally. The formation of voids within the residual wall is noted and observed to reduce in severity with increasing water injection pressure. The presence of such voids can be detected by the signature from an infrared temperatures sensor.
8

Global stability analysis of complex fluids

Lashgari, Iman January 2013 (has links)
The main focus of this work is on the non-Newtonian effects on the inertial instabilities in shear flows. Both inelastic (Carreau) and elastic models (Oldroyd-B and FENE-P) have been employed to examine the main features of the non-Newtonian fluids; shear-thinning, shear-thickening and elasticity. Several classical configurations have been considered; flow past a circular cylinder, in a lid-driven cavity and in a channel. We have used a wide range of tools for linear stability analysis, modal, non-modal, energy and sensitivity analysis, to determine the instability mechanisms of the non-Newtonian flows and compare them with those of the Newtonian flows. Direct numerical simulations have been also used to prove the results obtained by the linear stability analysis. Significant modifications/alterations in the instability of the different flows have been observed under the action of the non-Newtonian effects. In general, shear-thinning/shear-thickening effects destabilize/stabilize the flow around the cylinder and in a lid driven cavity. Viscoelastic effects both stabilize and destabilize the channel flow depending on the ratio between the viscoelastic and flow time scales. The instability mechanism is just slightly modified in the cylinder flow whereas new instability mechanisms arise in the lid-driven cavity flow. We observe that the non-Newtonian effect can alter the inertial flow at both baseflow and perturbation level (e.g. Carreau fluid past a cylinder or in a lid driven cavity) or it may just affect the perturbations (e.g. Oldroyd-B fluid in channel). In all the flow cases studied, the modifications in the instability dynamics are shown to be strongly connected to the contribution of the different terms in the perturbation kinetic energy budget. / <p>QC 20140113</p>
9

Finite element simulation of non-Newtonian flow in the converging section of an extrusion die using a penalty function technique

Ghosh, Jayanto K. January 1989 (has links)
No description available.
10

Rapid simultaneous hypersonic aerodynamic and trajectory optimization for conceptual design

Grant, Michael James 30 March 2012 (has links)
Traditionally, the design of complex aerospace systems requires iteration among segregated disciplines such as aerodynamic modeling and trajectory optimization. Multidisciplinary design optimization algorithms have been developed to efficiently orchestrate the interaction among these disciplines during the design process. For example, vehicle capability is generally obtained through sequential iteration among vehicle shape, aerodynamic performance, and trajectory optimization routines in which aerodynamic performance is obtained from large pre-computed tables that are a function of angle of attack, sideslip, and flight conditions. This numerical approach segregates advancements in vehicle shape design from advancements in trajectory optimization. This investigation advances the state-of-the-art in conceptual hypersonic aerodynamic analysis and trajectory optimization by removing the source of iteration between aerodynamic and trajectory analyses and capitalizing on fundamental linkages across hypersonic solutions. Analytic aerodynamic relations, like those derived in this investigation, are possible in any flow regime in which the flowfield can be accurately described analytically. These relations eliminate the large aerodynamic tables that contribute to the segregation of disciplinary advancements. Within the limits of Newtonian flow theory, many of the analytic expressions derived in this investigation provide exact solutions that eliminate the computational error of approximate methods widely used today while simultaneously improving computational performance. To address the mathematical limit of analytic solutions, additional relations are developed that fundamentally alter the manner in which Newtonian aerodynamics are calculated. The resulting aerodynamic expressions provide an analytic mapping of vehicle shape to trajectory performance. This analytic mapping collapses the traditional, segregated design environment into a single, unified, mathematical framework which enables fast, specialized trajectory optimization methods to be extended to also include vehicle shape. A rapid trajectory optimization methodology suitable for this new, mathematically integrated design environment is also developed by relying on the continuation of solutions found via indirect methods. Examples demonstrate that families of optimal hypersonic trajectories can be quickly constructed for varying trajectory parameters, vehicle shapes, atmospheric properties, and gravity models to support design space exploration, trade studies, and vehicle requirements definition. These results validate the hypothesis that many hypersonic trajectory solutions are connected through fast indirect optimization methods. The extension of this trajectory optimization methodology to include vehicle shape through the development of analytic hypersonic aerodynamic relations enables the construction of a unified mathematical framework to perform rapid, simultaneous hypersonic aerodynamic and trajectory optimization. Performance comparisons relative to state-of-the-art methodologies illustrate the computational advantages of this new, unified design environment.

Page generated in 0.0787 seconds