• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modélisation, conception et intégration de nouvelles architectures différentielles pour des capteurs M/NEMS résonants / Modelling, design and integration of new differential architectures for M/NEMS resonant sensors

Prache, Pierre 09 November 2017 (has links)
Les capteurs M/NEMS résonants, grâce à leur petite taille, faible consommation, et caractère quasi-numérique (leur grandeur de sortie est une fréquence la plupart du temps), sont des outils incontournables dans les systèmes embarqués modernes, des objets connectés simples à l’industrie aérospatiale et militaire.Cependant, ils sont soumis aux dérives environnementales, et malgré la possibilité d’en diminuer l’effet par différentes techniques de conception, parfois l’association de deux capteurs en mode différentiel est nécessaire pour assurer la fiabilité de l’information en environnement difficiles. Dans cette thèse, une technique particulière de mesure différentielle est étudiée, qui consiste à synchroniser deux résonateurs, dont l’un est une référence et l’autre soumis à la grandeur physique à mesurer. Placés dans une seule boucle de rétroaction, les deux résonateurs oscillent à la même fréquence, et un désaccord entre les deux, issu de la grandeurphysique à mesurer entraine un déphasage. La mesure de ce déphasage est un moyen simple de remonter à l’information à mesurer, théoriquement insensible aux variations environnementales identiquement appliquées aux deux résonateurs. Cette technique bénéficie est également peu complexe au niveau de son implémentation, donc adapté à l’intégration à grande échelle. Après avoir étudié le cadre théorique de la synchronisation de résonateurs par verrouillage par injection, on dégage des contraintes d’implémentation, qui servent de ligne directrice dans la fabrication d’un démonstrateur. On dégage également des performances théoriques, qui sont comparées aux performances du démonstrateur. / M/NEMS resonant sensors, due to their small size, consumption and quasi-digital output (a frequency most of the time) are unavoidable tools for on-board systems, from smartphones to aeronautic technology. However, they suffer from environmental drifts, and even though the effect of these drifts can be limited by the design, it is sometimes necessary to use differential architectures to properly remove the drifts from the measurements and ensure the output reliability even in harsh environments. In this work, a special technique for differential measurement is studied, consisting in the synchronization of two resonators, one reference and one sensor. Placed in a single feedback loop, they oscillate at the same frequency and eventual phase shift when the physical quantity to be sensed is applied. This phase shift is a theoretically drift-free way to measure this physical quantity. This technique also benefits from its ease of integration, making it a good candidate for large scale integration. After studying the theoretical framework, several design guidelines are found, which are used in the fabrication of a proof of concept. The theoretical performances are found as well, and compared to the experimental ones.
2

Studies of nanoscale movements in fluids: oscillatory cantilevers and active micro-swimmers

Kara, Vural 10 March 2017 (has links)
As a result of recent advances in micro and nanotechnology, the tiny movements of nanoscale active and passive objects in fluids can be probed with ultrahigh sensitivity and time resolution. The overarching theme of this dissertation is to harness these movements in fluids in order to study fundamental fluid dynamics and develop novel biomedical devices. First, we use the oscillatory movements of nanocantilevers to investigate the scaling behavior of unsteady fluid flow. Here, our expansive experimental data and rigorous theoretical analysis suggest that a generalized scaling parameter combining the length and time scales of the flow governs the scaling. Second, we turn our attention to nanoscale movements of bacteria in a buffer. We develop a simple, robust and sensitive experimental method to detect and track the random movements of bacteria. Using this method, we show evidence that these random movements of bacteria correlate with their antibiotic susceptibility. In the first part of this thesis, we explore, through experimental and theoretical work, the breakdown of the Navier-Stokes equations in oscillatory fluid flows. The Navier-Stokes equations of hydrodynamics are based on two crucial assumptions. First, the fluid is approximated as a continuum, with a well-defined ``fluid particle." Second, the stress in the fluid is assumed to be a linear function of the rate-of-strain, resulting in a so-called Newtonian fluid. If a fluid such as an ideal gas is gradually rarefied, the Navier-Stokes equations begin to fail and a kinetic description of the flow becomes appropriate. The failure of the Navier-Stokes equations can be thought to take place via two different physical mechanisms: either the continuum hypothesis breaks down as a result of a finite size effect; or the local equilibrium is violated due to the high rate of strain. Our experimental approach is to create an unsteady flow by oscillating a finite-sized body in a gas and to measure the dissipation (or the drag force) acting on the body. By using micro and nanofabrication techniques, we independently tune the relevant linear dimensions and the frequencies of the oscillating bodies. We then measure the pressure-dependent dissipation of these micro/nano oscillators in three different gases, Helium, Nitrogen, and Argon. We observe that the scaling of the fluidic dissipation is governed by a subtle interplay between the length scale and the frequency, embodied respectively in the dimensionless Knudsen (Kn) and the Weissenberg ( Wi) numbers. We collapse all the experimental data using a single scaling parameter: Wi + Kn. This new dimensionless parameter, which can be regarded as a generalized Knudsen number, combines the relevant linear dimension and the frequency of the body; it is rooted in Galilean invariance and can be obtained rigorously from the Chapman-Enskog expansion of the Boltzmann equation. In the second part of the thesis, we turn to the movements of active micro-swimmers in a buffer. This portion of the work is motivated by a serious global public health problem: the rise of multi-drug resistant bacteria. One way to prevent this threat from growing is to treat bacterial infections with effective antibiotics using the minimum dosage. However, currently-used antibiotic susceptibility tests (ASTs), which determine whether or not bacterial isolates from a patient are susceptible to administered antibiotics, take too long. Here, we aim to develop a robust and rapid AST by exploiting a recently-observed microbiological phenomenon: various nanomechanical movements of bacteria subside promptly (within minutes) when the bacteria are exposed to an effective antibiotic. Our approach is to transduce bacterial movements into electrical voltage fluctuations in a microchannel filled with a buffer solution. When a small but constant current is driven through the microchannel, bacterial movements are converted into strong voltage fluctuations due to the fact that they modulate the effective microchannel diameter. Our experiments with E. coli show that the proposed detection method can provide antibiotic susceptibility results in ~1 hour, making it a promising rapid AST. Because this approach is based on a simple electrical measurement and does not require delicate process steps and instrumentation, it may eventually be used at the point of care. / 2019-03-09T00:00:00Z
3

Application des techniques de contrôle aux réseaux de micro et nanostructures

Kharrat, Chady 10 December 2009 (has links) (PDF)
Un des plus importants profits qu'on peut tirer des M/NEMS est la capacité de les fabriquer en grande masse permettant leur assemblage sous forme de réseau. Toutefois, de nombreux problèmes s'opposent à l'utilisation de ces systèmes tels que la complexité de leur contrôle, la non-uniformité et les couplages entre leurs éléments, les sources de bruits et de non-linéarités, etc.. Il est alors nécessaire de prendre en compte ces différents aspects dès la phase de conception, les corriger ou les exploiter, pour aboutir à des nouvelles architectures qui répondent aux exigences de hautes performances. En se servant d'un large réseau de nano-transducteurs, une contribution au contrôle dynamique robuste d'une micro-surface « intelligente » est développée. La structure continue est ensuite remplacée par un réseau de NEMS dont le modèle est détaillé pour la première fois en tenant compte des dispersions entre les éléments. Des architectures de réseaux couplés sont proposées pour réduire les effets des dispersions, améliorant ainsi la sélectivité des filtres résultants. Basée sur le schéma de transductions distribuées, une nouvelle stratégie d'ajustement du filtre est élaborée par contrôle modal. Ces différents réseaux (couplés ou non) peuvent être utilisés pour des applications capteurs où le système de mesure est modélisé en fonction de la technique utilisée et de la structure adoptée avant d'améliorer les performances par un contrôle approprié. Une nouvelle configuration exploitant les non-linéarités de transduction est proposée pour compenser et mesurer la variation de la fréquence de résonance permettant de réduire la complexité du système global.

Page generated in 0.0371 seconds