Spelling suggestions: "subject:"nichtkonvexe"" "subject:"richtlinienkonforme""
1 |
Finite-Elemente-Mortaring nach einer Methode von J. A. Nitsche für elliptische RandwertaufgabenPönitz, Kornelia 11 September 2006 (has links) (PDF)
Viele technische Prozesse führen auf Randwertprobleme mit partiellen
Differentialgleichungen, die mit Finite-Elemente-Methoden näherungsweise
gelöst werden können. Spezielle Varianten dieser Methoden sind
Finite-Elemente-Mortar-Methoden. Sie erlauben das Arbeiten mit an
Teilgebietsschnitträndern nichtzusammenpassenden Netzen, was für
Probleme mit komplizierten Geometrien, Randschichten, springenden
Koeffizienten sowie für zeitabhängige Probleme von Vorteil sein kann.
Ebenso können unterschiedliche Diskretisierungsmethoden in den einzelnen
Teilgebieten miteinander gekoppelt werden.
In dieser Arbeit wird das Finite-Elemente-Mortaring nach einer Methode
von Nitsche für elliptische Randwertprobleme auf zweidimensionalen
polygonalen Gebieten untersucht. Von besonderem Interesse sind dabei
nichtreguläre Lösungen (u \in H^{1+\delta}(\Omega), \delta>0) mit
Eckensingularitäten für die Poissongleichung sowie die Lamé-Gleichung
mit gemischten Randbedingungen. Weiterhin werden singulär gestörte
Reaktions-Diffusions-Probleme betrachtet, deren Lösungen zusätzlich zu
Eckensingularitäten noch anisotropes Verhalten in Randschichten
aufweisen.
Für jede dieser drei Problemklassen wird das Nitsche-Mortaring
dargelegt. Es werden einige Eigenschaften der Mortar-Diskretisierung
angegeben und a-priori-Fehlerabschätzungen in einer H^1-artigen sowie
der L_2-Norm durchgeführt. Auf lokal verfeinerten Dreiecksnetzen können
auch für Lösungen mit Eckensingularitäten optimale Konvergenzordnungen
nach gewiesen werden. Bei den Lösungen mit anisotropen Verhalten werden
zusätzlich anisotrope Dreiecksnetze verwendet. Es werden auch hier
Konvergenzordnungen wie bei klassischen Finite-Elemente-Methoden ohne
Mortaring erreicht. Numerische Experimente illustrieren die Methode und
die Aussagen zur Konvergenz.
|
2 |
Finite-Elemente-Mortaring nach einer Methode von J. A. Nitsche für elliptische RandwertaufgabenPönitz, Kornelia 29 June 2006 (has links)
Viele technische Prozesse führen auf Randwertprobleme mit partiellen
Differentialgleichungen, die mit Finite-Elemente-Methoden näherungsweise
gelöst werden können. Spezielle Varianten dieser Methoden sind
Finite-Elemente-Mortar-Methoden. Sie erlauben das Arbeiten mit an
Teilgebietsschnitträndern nichtzusammenpassenden Netzen, was für
Probleme mit komplizierten Geometrien, Randschichten, springenden
Koeffizienten sowie für zeitabhängige Probleme von Vorteil sein kann.
Ebenso können unterschiedliche Diskretisierungsmethoden in den einzelnen
Teilgebieten miteinander gekoppelt werden.
In dieser Arbeit wird das Finite-Elemente-Mortaring nach einer Methode
von Nitsche für elliptische Randwertprobleme auf zweidimensionalen
polygonalen Gebieten untersucht. Von besonderem Interesse sind dabei
nichtreguläre Lösungen (u \in H^{1+\delta}(\Omega), \delta>0) mit
Eckensingularitäten für die Poissongleichung sowie die Lamé-Gleichung
mit gemischten Randbedingungen. Weiterhin werden singulär gestörte
Reaktions-Diffusions-Probleme betrachtet, deren Lösungen zusätzlich zu
Eckensingularitäten noch anisotropes Verhalten in Randschichten
aufweisen.
Für jede dieser drei Problemklassen wird das Nitsche-Mortaring
dargelegt. Es werden einige Eigenschaften der Mortar-Diskretisierung
angegeben und a-priori-Fehlerabschätzungen in einer H^1-artigen sowie
der L_2-Norm durchgeführt. Auf lokal verfeinerten Dreiecksnetzen können
auch für Lösungen mit Eckensingularitäten optimale Konvergenzordnungen
nach gewiesen werden. Bei den Lösungen mit anisotropen Verhalten werden
zusätzlich anisotrope Dreiecksnetze verwendet. Es werden auch hier
Konvergenzordnungen wie bei klassischen Finite-Elemente-Methoden ohne
Mortaring erreicht. Numerische Experimente illustrieren die Methode und
die Aussagen zur Konvergenz.
|
Page generated in 0.064 seconds