Spelling suggestions: "subject:"nikolai"" "subject:"nikola""
1 |
On continuous images of Radon-Nikodým compact spacesIancu, Mihaela. January 2001 (has links)
Thesis (Ph. D.)--York University, 2001. Graduate Programme in Mathematics and Statistics. / Typescript. Includes bibliographical references (leaves 86-87). Also available on the Internet. MODE OF ACCESS via web browser by e506ring the following URL: http://wwwlib.umi.com/cr/yorku/fullcit?pNQ66351.
|
2 |
Differentiability of convex functions and Radon-Nikodym properties in Banach spaces /Ho, Kwok-hon. January 1983 (has links)
Thesis--M. Phil., University of Hong Kong, 1983.
|
3 |
Differentiability of convex functions and Radon-Nikodym properties in Banach spaces何國漢, Ho, Kwok-hon. January 1983 (has links)
published_or_final_version / Mathematics / Master / Master of Philosophy
|
4 |
The Reciprocal Dunford-Pettis and Radon-Nikodym Properties in Banach SpacesLeavelle, Tommy L. (Tommy Lee) 08 1900 (has links)
In this paper we give a characterization theorem for the reciprocal Dunford-Pettis property as defined by Grothendieck. The relationship of this property to Pelczynski's property V is examined. In particular it is shown that every Banach space with property V has the reciprocal Dunford-Pettis property and an example is given to show that the converse fails to hold. Moreover the characterizations of property V and the reciprocal Dunford-Pettis property lead to the definitions of property V* and property RDP* respectively. Me compare and contrast results for the reciprocal Dunford-Pettis property and property RDP* with those for properties V and V*. In the final chapter we use a result of Brooks to obtain a characterization for the Radon-Nikodým property.
|
5 |
Détermination sous-différentielle, propriété Radon-Nikodym de faces, et structure différentielle des ensembles prox-réguliers / Subdifferential determination, Faces Radon-Nikodym property, and differential structure of prox-regular setsSalas Videla, David 14 December 2016 (has links)
Ce travail est divisé en deux parties: Dans la première partie, on présente un résultat d'intégration dans les espaces localement convexes valable pour une longe classe des fonctions non-convexes. Cela nous permet de récupérer l'enveloppe convexe fermée d'une fonction à partir du sous-différentiel convexe de cette fonction. Motivé par ce résultat, on introduit la classe des espaces ``Subdifferential Dense Primal Determined'' (SDPD). Ces espaces jouissent des conditions nécessaires permettant d'appliquer le résultat ci-dessus. On donne aussi une interprétation géométrique de ces espaces, appelée la Propriété Radon-Nikod'ym de Faces (FRNP). Dans la seconde partie, on étudie dans le contexte d'espaces d'Hilbert, la relation entre la lissité de la frontière d'un ensemble prox-régulier et la lissité de sa projection métrique. On montre que si un corps fermé possède une frontière $mathcal{C}^{p+1}$-lisse (avec $pgeq 1$), alors sa projection métrique est de classe $mathcal{C}^p$ dans le tube ouvert associé à sa fonction de prox-régularité. On établit également une version locale du même résultat reliant la lissité de la frontière autour d'un point à la prox-régularité en ce point. On étudie par ailleurs le cas où l'ensemble est lui-même une $mathcal{C}^{p+1}$-sous-variété. Finalement, on donne des réciproques de ces résultats. / This work is divided in two parts: In the first part, we present an integration result in locally convex spaces for a large class of nonconvex functions which enables us to recover the closed convex envelope of a function from its convex subdifferential. Motivated by this, we introduce the class of Subdifferential Dense Primal Determined (SDPD) spaces, which are those having the necessary condition which allows to use the above integration scheme, and we study several properties of it in the context of Banach spaces. We provide a geometric interpretation of it, called the Faces Radon-Nikod'ym property. In the second part, we study, in the context of Hilbert spaces, the relation between the smoothness of the boundary of a prox-regular set and the smoothness of its metric projection. We show that whenever a set is a closed body with a $mathcal{C}^{p+1}$-smooth boundary (with $pgeq 1$), then its metric projection is of class $mathcal{C}^{p}$ in the open tube associated to its prox-regular function. A local version of the same result is established as well, namely, when the smoothness of the boundary and the prox-regularity of the set are assumed only near a fixed point. We also study the case when the set is itself a $mathcal{C}^{p+1}$-submanifold. Finally, we provide converses for these results.
|
6 |
Geometrické vlastnosti podprostorů spojitých funkcí / Geometric properties of subspaces of continuous functionsPetráček, Petr January 2011 (has links)
In this thesis we study certain geometric properties of Müntz spa- ces as subspaces of continuous functions. In the first chapter we present some of the most important examples of the Müntz type theorems. Namely, we present the classic Müntz theorem and the Full Müntz theorem in the setting of the space of continuous functions on the interval [0, 1]. We also mention several extensions of these theorems to the case of continuous functions on the general interval [a, b] as well as an analogy of the Full Müntz theorem for the Lp ([0, 1]) spaces. The second chapter is divided into three sections. In the first section we present some definitions and well-known theorems of Choquet theory, which we use to characterize the Choquet boundary of Müntz spa- ces. In the second section we present the result concerning non-reflexivity of Müntz spaces as well as its corollary describing the non-existence of an equiva- lent uniformly convex norm on these spaces. In the third section, we concern ourselves with the question of Müntz spaces having the Radon-Nikodym pro- perty. As a main result of this part we show that a certain type of Müntz spaces doesn't have the Radon-Nikodym property. The final chapter contains a summary of some known results as well as open problems related to the theory of Müntz spaces....
|
7 |
Operator-Valued Frames Associated with Measure SpacesJanuary 2014 (has links)
abstract: Since Duffin and Schaeffer's introduction of frames in 1952, the concept of a frame has received much attention in the mathematical community and has inspired several generalizations. The focus of this thesis is on the concept of an operator-valued frame (OVF) and a more general concept called herein an operator-valued frame associated with a measure space (MS-OVF), which is sometimes called a continuous g-frame. The first of two main topics explored in this thesis is the relationship between MS-OVFs and objects prominent in quantum information theory called positive operator-valued measures (POVMs). It has been observed that every MS-OVF gives rise to a POVM with invertible total variation in a natural way. The first main result of this thesis is a characterization of which POVMs arise in this way, a result obtained by extending certain existing Radon-Nikodym theorems for POVMs. The second main topic investigated in this thesis is the role of the theory of unitary representations of a Lie group G in the construction of OVFs for the L^2-space of a relatively compact subset of G. For G=R, Duffin and Schaeffer have given general conditions that ensure a sequence of (one-dimensional) representations of G, restricted to (-1/2,1/2), forms a frame for L^{2}(-1/2,1/2), and similar conditions exist for G=R^n. The second main result of this thesis expresses conditions related to Duffin and Schaeffer's for two more particular Lie groups: the Euclidean motion group on R^2 and the (2n+1)-dimensional Heisenberg group. This proceeds in two steps. First, for a Lie group admitting a uniform lattice and an appropriate relatively compact subset E of G, the Selberg Trace Formula is used to obtain a Parseval OVF for L^{2}(E) that is expressed in terms of irreducible representations of G. Second, for the two particular Lie groups an appropriate set E is found, and it is shown that for each of these groups, with suitably parametrized unitary duals, the Parseval OVF remains an OVF when perturbations are made to the parameters of the included representations. / Dissertation/Thesis / Doctoral Dissertation Mathematics 2014
|
8 |
Ratio Set of Boundary ActionsZhou, Tianyi 05 September 2023 (has links)
Given an action of a countable group with a quasi-invariant measure, there exists a multiplicative group in (0, ∞), called the ratio set of the group action, which in a sense describes the values of the Radon-Nikodym derivative. The main purpose of this thesis is to find the ratio set of the action of a finitely generated free group Ƒ on its topological boundary ∂Ƒ (the set of infinite words) for a certain natural class of quasi-invariant boundary measures. -- In Section 1, we focus on the general ergodic theory of equivalence relations. We outline the set-up, borrow from [1], [4] the definitions of the central notions of the theory, including counting measures (Proposition 1.8), quasi-invariance (Definition 1.6), Radon-Nikodym cocycle (Definition 1.15) and raio set (Definition 1.19), and illustrate them on the example of the orbit equivalence relation of a Markov shift (Definition 1.22). We also introduce the principal object: the boundary action of a finitely generated free group (see Section 1.2). -- In Section 2, we define the class of multiplicative Markov measures (Definition 2.1). These are the measures on a topological Markov chain entirely determined just by an initial (base) distribution and the admissibility matrix; the transition probabilities are then just the normalized restrictions of the base distribution onto the set of admissible transitions (see [7]). In the case of the free group, its boundary has a natural structure of a topological Markov chain (determined by the irreducibility condition from the definition of a free group: consecutive letters should not cancel each other), and in this case, we show that the multiplicative Markov measures are precisely the ones for which the Radon-Nikodym cocycle is a product cocycle (i.e. a cocycle whose potential only depends on the first letter of the input; see Definition 2.8). The final result of this section is an explicit description of the ratio set of the boundary action with respect to multiplicative Markov measures. -- In Section 3, given a probability measure 𝜇 on the set of free generators and their inverses, the definition of the associated nearest neighbor random walk is given. According to Furstenberg's Theorem (proof provided in Appendix), in this random walk, sample paths converge almost surely to a random boundary point, and the resulting limit distribution on the boundary of the free group is called the harmonic measure of the random walk (see Section 3.1). We show that the harmonic measure is a multiplicative measure (Theorem 3.3), and therefore the results of Section 2 allow us to describe the ratio set of the harmonic measure (Theorem 3.5). A significant role in these considerations is played by the passage probabilities of the random walk (given a group element, the probability that it is ever visited by a random walk). Since the harmonic measure is multiplicative, its potential only depends on the first letter, and this dependence actually amounts to taking the inverse of the corresponding passage probability (Proposition 2.9, Remark 2.10). Finally, we establish a one-to-one correspondence between three families of numbers indexed by the alphabet of the free group and subject to natural conditions; these are the step distributions of the random walk, the base of the harmonic measure (which is multiplicative Markov) and the family of passage probabilities (Theorem 3.6). -- In Section 4, we discuss another method for finding the ratio set of the harmonic measure based on using Martin theory (see [2]). -- In the Appendix, we prove Furstenberg's Theorem, a result used for defining the harmonic measure in Section 3. Actually, it is applicable not only for the nearest neighbor random walk (i.e. not only when the probability measure 𝜇 is supported on the alphabet set) but also the more general case where the support of the step distribution generates the free group. Moreover, in addition to the existence it also characterizes the harmonic measure as the unique 𝜇-stationary measure on the boundary
|
9 |
Conjuntos que determinan la acotación uniformeLópez Alfonso, Salvador 16 December 2016 (has links)
The classical Nykodym theorem (1933) asserts that a set H of countably additive complex measures defined on a sigma-algebra S which is bounded for each element of S, then H is uniformly bounded on S. It is well known that this theorem fails if we replace the sigma-algebra S simply by an algebra.
Let A be the algebra of subsets of a nonempty set, and consider the Banach space ba(A) of all real (or complex) finitely additive measures of bounded variation defined on A. A subset B of A is said to have the N-property (Nikodym property) if every B-pointwise bounded subset M of ba(A) is uniformly bounded on A. Recall the classical Nikodym-Dieudonné-Grothendieck's theorem which says that each sigma-algebra has the N-property. Moreover B is said to have the strong N-property if for each increasing countable covering (B_{m})_{m} of B there exists B_{n} which has the N-property. Valdivia proved in 1979 that each sigma-algebra has the strong N-property.
The aforementioned Valdivia's theorem motivated to prove that each sigma-algebra S of subsets of a set has web-N-property, that is, if (B_{m_1})_{m_1} is an increasing countable covering of S and if (B_{m_1},_{m_2},....,_{m_p},_{m_{p+1}})_{m_{p+1}} is an increasing countably covering of B_{m_1},_{m_2},....,_{m_p}, for each natural numbers p, mi, with i = 1, 2,..., p, then there exists a sequence (n_{r})_{r} such thatB_{n_1},_{n_2},....,_{n_r} has the N-property for every r = 1, 2, 3, ...... .
In this thesis it is proved that nearly all infinite chains in the increasing web (B_{m_1},_{m_2},....,_{m_p}: m_i=1,2,... , i=1,2,...,p, and p=1,2,.....} are composed of sets that have web-N-property.
In the main result in this thesis it is proved that the algebra J(K) of Jordan measurables subsets of a compact k-dimensional interval K contained in R^k has the web-N-property. This result imporves the 2013 Valdivia's theorem stating that J(K) has the strong Nikodym property, which in turns was a grest improvement of Schachermayer's result of N property of J([0; 1]).
The analysis of the demonstration of this result has allowed us give a sufficient condition in an algebra of subsets of a set that implies the property **wN. This sufficient condition is verified by each sigma-algebra as well as by the algebra J(K), whence the properties wN of any sigma-algebra and of J(*K) could have been presented like corollaries of this sufficient condition. It has seemed more natural to follow the chronological order, such as it has done in the Thesis.
In the chapter 5 the problem proposed by Valdivia in 2013 is considered, i.e., to prove if it is true or not that when an algebra A of subsets have the property N then it has the property sN. In the section 5.2 this problem is considered in the most general context of normed spaces, because a subset B of an algebra A has the property N if each subset M of finitely additive bounded measures pointwise bounded in the sets of B verifies that M is a bounded subset of the Banach space of bounded finitely additive measures in the algebra A endowed with the supreme norm, what carries to the study of the sets DAU that determine the uniform boundedness of a normed space.
Several applications of the obtained results to problems of location of vectorial averages and of convergence of sequences as well as several open problems are presented.
The limitation of number of characters prevents to comment other results. We finish this summary indicating that we have proved that the properties wN, w(sN) and w(wN) are equivalents. / El clásico teorema de Nykodym (1933) afirma que si un subconjunto H de medias complejas numerablemente aditivas definidas en una sigma-algebra S está acotado en cada elemento de S, entonces H está uniformente acotado en S. Es bien conocido que este teorema no es cierto en general si se sustituye la sigma-álgebra S por un álgebra.
Sea A un álgebra de subconjuntos de un conjunto no vacío, y consideremos el espacio de Banach ba(A) de las medias reales (o complejas) finitamente aditivas de variación acotada definidas en A. Un subconjunto B of A se dice que tiene la propiedad N (propiedad de Nikodym) si para cada subconjunto M of ba(A) que sea B-puntualmente acotado se tiene que M es uniformemente acotado en A.
Recordemos que el clásico teorema de Nikodym-Dieudonné-Grothendieck's dice que cada sigma-algebra tiene la propiedad N.
Además se dice que B tiene la propiedad N-fuerte si cada para cada cubrimiento numerable creciente (B_{m})_{m} de B existe B_{n} que tiene la propiedad N.
Valdivia demmostró en 1979 que cada sigma-algebra tiene la propiedad N-property.
Este teorema de Valdivia motivó demostrar que cada sigma-algebra S de subconjuntos de un conjunto tiene la propiedad N para mallas crecientes, es decir, si (B_{m_1})_{m_1} es un cubrimiento numerable creciente de S y si (B_{m_1},_{m_2},....,_{m_p},_{m_{p+1}})_{m_{p+1}} es un cubrimiento numerable creciente de B_{m_1},_{m_2},....,_{m_p}, para cada números naturales p, mi, con i=1, 2,..., p, entonces existe una sucesión (n_{r})_{r} tal que B_{n_1},_{n_2},....,_{n_r} tiene la propiedad N para cada r = 1, 2, 3, ...... .
En la tesis se prueba que casi todas las cadenas infinitas en una malla creciente (B_{m_1},_{m_2},....,_{m_p}: m_i=1,2,... , i=1,2,...,p, and p=1,2,.....} están compuestas de conjuntos que tienen la propiedad N para mallas crecientes.
El resultado principal de la tesis prueba que el algebra J(K) de los subconjuntos Jordan medibles de un intervalo compacto k-dimensional K contenido en R^k tiene la propiedad N para mallas crecientes. Este resultado mejora el resultado de Valdivia de 2013 de que J (K) tiene la propiedad fuerte de Nikodym, que a su vez mejoraba un resultado anterior de Schachermayer, quien probó que J ([0; 1]) tiene la propiedad N.
El análisis de la demostración de este resultado nos ha permitido dar una condición suficiente en un álgebra de subconjuntos de un conjunto que implica la propiedad wN. Esta condición suficiente la verifican tanto las sigma-álgebras como el álgebra J (K), por lo que las propiedades wN de cualquier sigma-álgebra y de J(K) se podían haber presentado como corolarios de dicha condición suficiente. Ha parecido más natural seguir el orden cronológico, tal como se ha hecho en la Tesis.
En el capítulo 5 se considera el problema planteado por Valdivia en 2013. Consiste en averiguar si el que un álgebra A de conjuntos tenga la propiedad N implica o no el tener la propiedad sN. En la sección 5.2 se considera este problema en el contexto más general de los espacios normados, pues un subconjunto B de un álgebra A tiene la propiedad N si cada subconjunto M de medidas acotadas, finitamente aditivas y puntualmente acotadas en el conjunto de funciones características de los conjuntos de B verifica que M es un subconjunto acotado del espacio de Banach de dichas medias finitamente aditivas y acotadas definidas en A con la norma supremo, lo que lleva al estudio de los conjuntos DAU que determinan la acotación uniforme en un espacio normado.
Se presentan varias aplicaciones de los resultados obtenidos a problemas de localización de medias vectoriales y de convergencia de sucesioens de medias y varios problemas abiertos.
La limitación de número de caracteres impide comentar otros resultados. Terminamos este resumen indicando que hemos probado que las propiedades wN, w(sN) y w(wN) son equivalentes. / El clàssic teorema de Nykodym (1933) afirma que si un subconjunt H de mesures complexes numerablement aditives defiides en una sigma-àlgebra S és acotat en cada element de S, aleshores H és uniforment acotat en S. És ben conegut que aquest teorema no és cert en general si es sustitueix la sigma-àlgebra S simplement per una àlgebra.
Siga A una àlgebra de subconjunts d'un conjunt no buit, i considerem l'espai de Banach ba(A) de les mesures reals (o complexes) finitament aditives de variació acotada definides en A. Un subconjunt B de A es diu que té la propietat N (propietat de Nikodym) si cada subconjunt M de ba(A) que siga B-puntualment acotat es té que M és uniformement acotat en A.
Recordem que el clàssic teorema de Nikodym-Dieudonné-Grothendieck's diu que cada sigma-àlgebra té la propietat N.
A més a més es diu que B té la propietat forta N si per a cada cubrimient numerable creixent (B_{m})_{m} de B existeix B_{n} que té la propietat N.
Valdivia va provar en 1979 que cada sigma-àlgebra té la propietat N.
L'esmentat teorema de Valdivia va motivar demostrar que cada sigma-àlgebra S de subconjunts de un conjunt té la propietat N per a malles creixents, és dir, si (B_{m_1})_{m_1} és un cubrimient numerable creixent de S i si (B_{m_1},_{m_2},....,_{m_p},_{m_{p+1}})_{m_{p+1}} és un cubrimient numerable creixent de B_{m_1},_{m_2},....,_{m_p}, per a cada nombres naturals p, mi, amb i = 1, 2,..., p, aleshores existeix una successió (n_{r})_{r} tal que B_{n_1},_{n_2},....,_{n_r} té la propietat N per a cada r = 1, 2, 3, ...... .
En la tesi es prova que gairebé totes les cadenes infinites en una malla creixent (B_{m_1},_{m_2},....,_{m_p}: m_i=1,2,... , i=1,2,...,p, and p=1,2,.....} estan composades de conjunts que tenen la propietat N per a malles creixents.
El resultat principal de la tesi prova que l'àlgebra J(K) dels subconjunts Jordan mesurables d'un interval compacte k-dimensional K contingut en R^k té la propietat N per a malles creixents. Aquest resultat millora el resultat de Valdivia de 2013 de que J (K) té la propietat forta de Nikodym, que alhora millorava un resultat anterior de Schachermayer, qui va provar que J([0; 1]) té la propietat N.
L'anàlisi de la demostració d'aquest resultat ens ha permès donar una condició suficient en un àlgebra de subconjunts d'un conjunt que implica la propietat wN. Aquesta condició suficient la verifiquen tant les sigma-àlgebres com l'àlgebra J(K), per la qual cosa les propietats wN de qualsevol sigma-àlgebra i de J(K) es podien haver presentat com a corol·laris d'aquesta condició suficient. Ha semblat més natural seguir l'ordre cronològic, tal com s'ha fet en la Tesi.
En el capítol 5 es considera el problema plantejat per Valdivia en 2013. Consisteix a esbrinar si el que un àlgebra A de conjunts tinga la propietat N implica o no el tenir la propietat sN. En la secció 5.2 es considera aquest problema en el context més general dels espais normados, doncs un subconjunt B d'un àlgebra A té la propietat N si cada subconjunt M de mesures acotades, finitament additives i puntualment acotades en el conjunt de funcions característiques dels conjunts de B verifica que M és un subconjunt acotat de l'espai de Banach d'aquestes mesure finitament additives i acotades definides en A amb la norma suprem, la qual cosa porta a l'estudi dels conjunts DAU que determinen l'acotació uniforme en un espai normat.
Es presenten diverses aplicacions dels resultats obtinguts a problemes de localització de mitjanes vectorials i de convergència de **sucesioens de mitjanes i diversos problemes oberts.
La limitació de nombre de caràcters impedeix comentar altres resultats. Acabem aquest resum indicant que hem provat que les propietats wN, w(sN) i w(wN) són equivalents. / López Alfonso, S. (2016). Conjuntos que determinan la acotación uniforme [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/75266
|
10 |
Analyse dans les espaces de Banach / Analysis in Banach spacesProcházka, Antonín 24 June 2009 (has links)
Cette thèse traite quatre sujets différents de la théorie des espaces de Banach: Le premier est une caractérisation de la propriété de Radon-Nikodym en utilisant la notion du jeu des points et tranches: Le deuxième est une évaluation de l'indice de dentabilité préfaible des espaces C(K) où K est un compact du hauteur dénombrable: Le troisième est un renormage des espaces non séparables qui est simultanément LUC, lisse et approximable par des normes d'une lissité plus élevée. Le quatrième est une approche par le théorème de Baire aux principes variationnels paramétriques. La thèse commence par une introduction qui examine le contexte de ces résultats. / The thesis deals with four topics in the theory of Banach spaces. The first of them is a characterization of the Radon-Nikodym property using the notion of point-slice games. The second is a computation of the w* dentability index of the spaces C(K), where K is a compact of countable height. The third is a renorming result in nonseparable spaces, producing norms which are differentiable, LUR and approximated by norms of higher smoothness. The fourth topic is a Baire cathegory approach to parametric smooth variational principles. The thesis features an introduction which surveys the background of these results.
|
Page generated in 0.0377 seconds