Spelling suggestions: "subject:"sousvariétés"" "subject:"unevariété""
1 |
Contribution à l'étude des transformations CR des structures de Cauchy-Riemann analytiques réellesSunyé, Jean-Charles 03 December 2010 (has links) (PDF)
Cette thèse est consacrée à l'étude de l'existence d'applications holomorphes entre des sous-variétés réelles dans des espaces complexes. On s'intéresse plus particulièrement à la convergence et à l'approximation à la Artin d'applications formelles entre sous-variétés réelles. Tout d'abord, on montre la convergence des applications formelles de jacobien non identiquement nul entre une sous-variété générique analytique réelle minimale et une sous-variété générique analytique réelle holomorphiquement non dégénérée. Grâce à ce résultat, on obtient la convergence de toutes les applications formelles entre une hypersurface analytique réelle minimale holomorphiquement non dégénérée et une hypersurface qui ne contient pas de courbe holomorphe. D'autre part, on établit la convergence de l'application de réflexion associée à une application formelle de jacobien non identiquement nul entre hypersurfaces lorsque l'hypersurface source est minimale. Cela nous permet ensuite de montrer un résultat d'approximation à la Artin dans ce même cas. Pour finir, on prouve un théorème artinien pour des applications CR lisses entre deux sous-variétés dans des espaces complexes de dimensions différentes.
|
2 |
Exact Lagrangian cobordism and pseudo-isotopySuárez López, Lara Simone 09 1900 (has links)
Dans cette thèse, on étudie les propriétés des sous-variétés lagrangiennes dans une variété symplectique en utilisant la relation de cobordisme lagrangien. Plus précisément, on s'intéresse à déterminer les conditions pour lesquelles les cobordismes lagrangiens élémentaires sont en fait triviaux.
En utilisant des techniques de l'homologie de Floer et le théorème du s-cobordisme on démontre que, sous certaines hypothèses topologiques, un cobordisme lagrangien exact est une pseudo-isotopie lagrangienne. Ce resultat est une forme faible d'une conjecture due à Biran et Cornea qui stipule qu'un cobordisme lagrangien exact est hamiltonien isotope à une suspension lagrangianenne. / In this thesis we study the properties of Lagrangian submanifolds of a symplectic manifold by using the relation of Lagrangian cobordism. More precisely, we are interested in determining when an elementary Lagrangian cobordism is trivial.
Using techniques coming from Floer homology and the s-cobordism theorem, we show that under some topological assumptions, an exact Lagrangian cobordism is a Lagrangian pseudo-isotopy. This is a weaker version of a conjecture proposed by Biran and Cornea, which states that any exact Lagrangian cobordism is Hamiltonian isotopic to a Lagrangian suspension.
|
3 |
Résolution avec régularité jusqu'au bord de l'équation de Cauchy-Riemann dans des domaines à coins et de l'équation de Cauchy-Riemann tangentielle en codimension quelconqueRICARD, Hélène 20 December 2002 (has links) (PDF)
Dans ce travail, nous nous intéressons principalement à l'étude de deux équations classiques : l'équation de Cauchy-Riemann dans certains domaines de ${\Bbb C}^n$ et l'équation de Cauchy-Riemann tangentielle dans certains domaines d'une sous-variété CR générique $q$-concave. L'étude, liée à chaque équation, consiste, dans un premier temps, à obtenir des résultats de résolution locale avec des solutions ayant des propriétés de régularité jusqu'au bord des domaines considérés. Dans le cadre complexe, la méthode de résolution consiste à construire explicitement une solution grâce à la théorie des représentations intégrales, théorie dont l'essor date des années 70 grâce aux résultats de H. Grauert, G.M. Henkin, I. Lieb et E. Ramirez. On en deduit ainsi des estimations ${\cal C}^k$ sur des domaines à coins $q$-convexes et $q$-concaves locaux. Dans le cadre CR, la résolution se déduit des résultats obtenus dans le cas complexe grâce à des outils d'algèbre homologique et de théorie des faisceaux découlant en particulier de travaux de A. Andreotti, G. Fredericks, C.D. Hill et M. Nacinovich. On obtient alors des résultats locaux de résolution du $\bar \partial _b$ pour des formes de classe ${\cal C}^\infty$ jusqu'au bord des domaines considérés. Ensuite, on utilise les résultats locaux ainsi que la méthode <> due à H. Grauert pour montrer des théorèmes globaux d'annulation, de finitude ou de séparation des groupes de cohomologie.
|
4 |
Détermination sous-différentielle, propriété Radon-Nikodym de faces, et structure différentielle des ensembles prox-réguliers / Subdifferential determination, Faces Radon-Nikodym property, and differential structure of prox-regular setsSalas Videla, David 14 December 2016 (has links)
Ce travail est divisé en deux parties: Dans la première partie, on présente un résultat d'intégration dans les espaces localement convexes valable pour une longe classe des fonctions non-convexes. Cela nous permet de récupérer l'enveloppe convexe fermée d'une fonction à partir du sous-différentiel convexe de cette fonction. Motivé par ce résultat, on introduit la classe des espaces ``Subdifferential Dense Primal Determined'' (SDPD). Ces espaces jouissent des conditions nécessaires permettant d'appliquer le résultat ci-dessus. On donne aussi une interprétation géométrique de ces espaces, appelée la Propriété Radon-Nikod'ym de Faces (FRNP). Dans la seconde partie, on étudie dans le contexte d'espaces d'Hilbert, la relation entre la lissité de la frontière d'un ensemble prox-régulier et la lissité de sa projection métrique. On montre que si un corps fermé possède une frontière $mathcal{C}^{p+1}$-lisse (avec $pgeq 1$), alors sa projection métrique est de classe $mathcal{C}^p$ dans le tube ouvert associé à sa fonction de prox-régularité. On établit également une version locale du même résultat reliant la lissité de la frontière autour d'un point à la prox-régularité en ce point. On étudie par ailleurs le cas où l'ensemble est lui-même une $mathcal{C}^{p+1}$-sous-variété. Finalement, on donne des réciproques de ces résultats. / This work is divided in two parts: In the first part, we present an integration result in locally convex spaces for a large class of nonconvex functions which enables us to recover the closed convex envelope of a function from its convex subdifferential. Motivated by this, we introduce the class of Subdifferential Dense Primal Determined (SDPD) spaces, which are those having the necessary condition which allows to use the above integration scheme, and we study several properties of it in the context of Banach spaces. We provide a geometric interpretation of it, called the Faces Radon-Nikod'ym property. In the second part, we study, in the context of Hilbert spaces, the relation between the smoothness of the boundary of a prox-regular set and the smoothness of its metric projection. We show that whenever a set is a closed body with a $mathcal{C}^{p+1}$-smooth boundary (with $pgeq 1$), then its metric projection is of class $mathcal{C}^{p}$ in the open tube associated to its prox-regular function. A local version of the same result is established as well, namely, when the smoothness of the boundary and the prox-regularity of the set are assumed only near a fixed point. We also study the case when the set is itself a $mathcal{C}^{p+1}$-submanifold. Finally, we provide converses for these results.
|
5 |
Éclatement et contraction lagrangiens et applicationsRieser, Antonio P. 08 1900 (has links)
Soit (M, ω) une variété symplectique. Nous construisons une version de l’éclatement
et de la contraction symplectique, que nous définissons relative à une sous-variété
lagrangienne L ⊂ M. En outre, si M admet une involution anti-symplectique ϕ, et que
nous éclatons une configuration suffisament symmetrique des plongements de boules,
nous démontrons qu’il existe aussi une involution anti-symplectique sur l’éclatement
~M. Nous dérivons ensuite une condition homologique pour les surfaces lagrangiennes
réeles L = Fix(ϕ), qui détermine quand la topologie de L change losqu’on contracte une
courbe exceptionnelle C dans M. Finalement, on utilise ces constructions afin d’étudier
le packing relatif dans (ℂP²,ℝP²). / Given a symplectic manifold (M,ω) and a Lagrangian submanifold L, we construct
versions of the symplectic blow-up and blow-down which are defined relative to L. Furthermore,
if M admits an anti-symplectic involution ϕ, i.e. a diffeomorphism such that
ϕ2 = Id and ϕ*ω = —ω , and we blow-up an appropriately symmetric configuration
of symplectic balls, then we show that there exists an antisymplectic involution on the
blow-up ~M as well. We derive a homological condition for real Lagrangian surfaces
L = Fix(ϕ) which determines when the topology of L changes after a blow down, and
we then use these constructions to study the real packing numbers for real Lagrangian
submanifolds in (ℂP²,ℝP²).
|
6 |
L'éclatement en géométrie algébrique, différentielle et symplectiqueHerrera-Cordero, Esteban 04 1900 (has links)
L'éclatement est une transformation jouant un rôle important en géométrie, car il permet de résoudre des
singularités, de relier des variétés birationnellement équivalentes, et de construire des variétés possédant des propriétés inédites.
Ce mémoire présente d'abord l'éclatement tel que développé en géométrie algébrique classique. Nous l'étudierons pour le cas des
variétés affines et (quasi-)projectives, en un point, et le long d'un idéal et d'une sous-variété. Nous poursuivrons en étudiant l'extension de cette construction à la catégorie
différentiable, sur les corps réels et complexes, en un point et le long d'une sous-variété. Nous conclurons cette section en
explorant un exemple de résolution de singularité. Ensuite nous passerons à la catégorie
symplectique, où nous ferons la même chose que pour le cas différentiable complexe, en portant une attention particulière à
la forme symplectique définie sur la variété. Nous terminerons en étudiant un théorème dû à François Lalonde, où l'éclatement
joue un rôle clé dans la démonstration. Ce théorème affirme que toute 4-variété fibrée par des 2-sphères sur une surface de
Riemann, et différente du produit cartésien de deux 2-sphères, peut être équipée d'une 2-forme qui lui confère une structure
symplectique réglée par des courbes holomorphes par rapport à sa structure presque complexe, et telle que l'aire symplectique de la base est inférieure à la capacité de la variété. La preuve repose
sur l'utilisation de l'éclatement symplectique. En effet, en éclatant symplectiquement une boule contenue dans la 4-variété, il est possible d'obtenir une fibration contenant deux sphères d'auto-intersection -1 distinctes: la pré-image du point où est fait l'éclatement complexe usuel, et la transformation propre de la fibre. Ces
dernières sont dites exceptionnelles, et donc il est possible de procéder à l'inverse de l'éclatement - la contraction - sur
chacune d'elles. En l'accomplissant sur la deuxième, nous obtenons une variété minimale, et en combinant les informations
sur les aires symplectiques de ses classes d'homologies et de celles de la variété originale nous obtenons le résultat. / The blow-up is a transformation which plays an important role in geometry, because it can be used to resolve singularities,
relate birationally equivalent varieties, and construct varieties with new properties. This thesis first presents blowing-up as
developped in classical algebraic geometry. We will study it in the case of affine and (quasi-)projective varieties, on a point and
along an ideal and a subvariety. Then a discussion about its extension to the differential category will be carried out, over the real and complex
fields, on a point and along a submanifold. An example of a resolution of singularity will then follow. Subsequently we will discuss
blowing-up in the symplectic category, where we will do the same as for complex manifolds, paying careful
attention to the symplectic form. To conclude, we will study a theorem by François Lalonde, where the symplectic blow-up
plays a major part in proof. This theorem states that any 4-variety fibered by 2-spheres over a Riemann surface, and
different than the Cartesian product of two 2-spheres, can be equiped with a 2-form giving it a symplectic structure ruled by curves that are
holomorphic with respect to its almost-complex structure, and such that the symplectic area of the base is smaller that
the capacity of the variety. In the proof, we blow up a ball in the 4-variety, and obtain a fibration containing two distinct spheres with
a self-intersection equal to -1: the pre-image of the point where the usual complex blow-up is done, and
the proper transform of the fiber. These two are exceptional, so it is possible to do the inverse operation - the blow down -
on each of them. By blowing down the latter, we get a minimal variety, and by combining information about the
symplectic area of its homology classes and of those of the original variety, we obtain the result.
|
7 |
Éclatement et contraction lagrangiens et applicationsRieser, Antonio P. 08 1900 (has links)
Soit (M, ω) une variété symplectique. Nous construisons une version de l’éclatement
et de la contraction symplectique, que nous définissons relative à une sous-variété
lagrangienne L ⊂ M. En outre, si M admet une involution anti-symplectique ϕ, et que
nous éclatons une configuration suffisament symmetrique des plongements de boules,
nous démontrons qu’il existe aussi une involution anti-symplectique sur l’éclatement
~M. Nous dérivons ensuite une condition homologique pour les surfaces lagrangiennes
réeles L = Fix(ϕ), qui détermine quand la topologie de L change losqu’on contracte une
courbe exceptionnelle C dans M. Finalement, on utilise ces constructions afin d’étudier
le packing relatif dans (ℂP²,ℝP²). / Given a symplectic manifold (M,ω) and a Lagrangian submanifold L, we construct
versions of the symplectic blow-up and blow-down which are defined relative to L. Furthermore,
if M admits an anti-symplectic involution ϕ, i.e. a diffeomorphism such that
ϕ2 = Id and ϕ*ω = —ω , and we blow-up an appropriately symmetric configuration
of symplectic balls, then we show that there exists an antisymplectic involution on the
blow-up ~M as well. We derive a homological condition for real Lagrangian surfaces
L = Fix(ϕ) which determines when the topology of L changes after a blow down, and
we then use these constructions to study the real packing numbers for real Lagrangian
submanifolds in (ℂP²,ℝP²).
|
8 |
L'éclatement en géométrie algébrique, différentielle et symplectiqueHerrera-Cordero, Esteban 04 1900 (has links)
L'éclatement est une transformation jouant un rôle important en géométrie, car il permet de résoudre des
singularités, de relier des variétés birationnellement équivalentes, et de construire des variétés possédant des propriétés inédites.
Ce mémoire présente d'abord l'éclatement tel que développé en géométrie algébrique classique. Nous l'étudierons pour le cas des
variétés affines et (quasi-)projectives, en un point, et le long d'un idéal et d'une sous-variété. Nous poursuivrons en étudiant l'extension de cette construction à la catégorie
différentiable, sur les corps réels et complexes, en un point et le long d'une sous-variété. Nous conclurons cette section en
explorant un exemple de résolution de singularité. Ensuite nous passerons à la catégorie
symplectique, où nous ferons la même chose que pour le cas différentiable complexe, en portant une attention particulière à
la forme symplectique définie sur la variété. Nous terminerons en étudiant un théorème dû à François Lalonde, où l'éclatement
joue un rôle clé dans la démonstration. Ce théorème affirme que toute 4-variété fibrée par des 2-sphères sur une surface de
Riemann, et différente du produit cartésien de deux 2-sphères, peut être équipée d'une 2-forme qui lui confère une structure
symplectique réglée par des courbes holomorphes par rapport à sa structure presque complexe, et telle que l'aire symplectique de la base est inférieure à la capacité de la variété. La preuve repose
sur l'utilisation de l'éclatement symplectique. En effet, en éclatant symplectiquement une boule contenue dans la 4-variété, il est possible d'obtenir une fibration contenant deux sphères d'auto-intersection -1 distinctes: la pré-image du point où est fait l'éclatement complexe usuel, et la transformation propre de la fibre. Ces
dernières sont dites exceptionnelles, et donc il est possible de procéder à l'inverse de l'éclatement - la contraction - sur
chacune d'elles. En l'accomplissant sur la deuxième, nous obtenons une variété minimale, et en combinant les informations
sur les aires symplectiques de ses classes d'homologies et de celles de la variété originale nous obtenons le résultat. / The blow-up is a transformation which plays an important role in geometry, because it can be used to resolve singularities,
relate birationally equivalent varieties, and construct varieties with new properties. This thesis first presents blowing-up as
developped in classical algebraic geometry. We will study it in the case of affine and (quasi-)projective varieties, on a point and
along an ideal and a subvariety. Then a discussion about its extension to the differential category will be carried out, over the real and complex
fields, on a point and along a submanifold. An example of a resolution of singularity will then follow. Subsequently we will discuss
blowing-up in the symplectic category, where we will do the same as for complex manifolds, paying careful
attention to the symplectic form. To conclude, we will study a theorem by François Lalonde, where the symplectic blow-up
plays a major part in proof. This theorem states that any 4-variety fibered by 2-spheres over a Riemann surface, and
different than the Cartesian product of two 2-spheres, can be equiped with a 2-form giving it a symplectic structure ruled by curves that are
holomorphic with respect to its almost-complex structure, and such that the symplectic area of the base is smaller that
the capacity of the variety. In the proof, we blow up a ball in the 4-variety, and obtain a fibration containing two distinct spheres with
a self-intersection equal to -1: the pre-image of the point where the usual complex blow-up is done, and
the proper transform of the fiber. These two are exceptional, so it is possible to do the inverse operation - the blow down -
on each of them. By blowing down the latter, we get a minimal variety, and by combining information about the
symplectic area of its homology classes and of those of the original variety, we obtain the result.
|
Page generated in 0.0264 seconds