• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Symmetry in monotone Lagrangian Floer theory

Smith, Jack Edward January 2017 (has links)
In this thesis we study the self-Floer theory of a monotone Lagrangian submanifold $L$ of a closed symplectic manifold $X$ in the presence of various kinds of symmetry. First we consider the group $\mathrm{Symp}(X, L)$ of symplectomorphisms of $X$ preserving $L$ setwise, and extend its action on the Oh spectral sequence to coefficients of arbitrary characteristic, working over an enriched Novikov ring. This imposes constraints on the differentials in the spectral sequence which force them to vanish in certain situations. We then specialise to the case where $L$ is $K$-homogeneous for a compact Lie group $K$, meaning roughly that $X$ is Kaehler, $K$ acts on $X$ by holomorphic automorphisms, and $L$ is a Lagrangian orbit. By studying holomorphic discs with boundary on $L$ we compute the image of low codimension $K$-invariant subvarieties of $X$ under the length zero closed-open string map. This places restrictions on the self-Floer cohomology of $L$ which generalise and refine the Auroux-Kontsevich-Seidel criterion. These often result in the need to work over fields of specific positive characteristics in order to obtain non-zero cohomology. The disc analysis is then developed further, with the introduction of the notion of poles and a reflection mechanism for completing holomorphic discs into spheres. This theory is applied to two main families of examples. The first is the collection of four Platonic Lagrangians in quasihomogeneous threefolds of $\mathrm{SL}(2, \mathbb{C})$, starting with the Chiang Lagrangian in $\mathbb{CP}^3$. These were previously studied by Evans and Lekili, who computed the self-Floer cohomology of the latter. We simplify their argument, which is based on an explicit construction of the Biran-Cornea pearl complex, and deal with the remaining three cases. The second is a family of $\mathrm{PSU}(n)$-homogeneous Lagrangians in products of projective spaces. Here the presence of both discrete and continuous symmetries leads to some unusual properties: in particular we obtain non-displaceable monotone Lagrangians which are narrow in a strong sense. We also discuss related examples including applications of Perutz's symplectic Gysin sequence and quilt functors. The thesis concludes with a discussion of directions for further research and a collection of technical appendices.
2

Exact Lagrangian cobordism and pseudo-isotopy

Suárez López, Lara Simone 09 1900 (has links)
Dans cette thèse, on étudie les propriétés des sous-variétés lagrangiennes dans une variété symplectique en utilisant la relation de cobordisme lagrangien. Plus précisément, on s'intéresse à déterminer les conditions pour lesquelles les cobordismes lagrangiens élémentaires sont en fait triviaux. En utilisant des techniques de l'homologie de Floer et le théorème du s-cobordisme on démontre que, sous certaines hypothèses topologiques, un cobordisme lagrangien exact est une pseudo-isotopie lagrangienne. Ce resultat est une forme faible d'une conjecture due à Biran et Cornea qui stipule qu'un cobordisme lagrangien exact est hamiltonien isotope à une suspension lagrangianenne. / In this thesis we study the properties of Lagrangian submanifolds of a symplectic manifold by using the relation of Lagrangian cobordism. More precisely, we are interested in determining when an elementary Lagrangian cobordism is trivial. Using techniques coming from Floer homology and the s-cobordism theorem, we show that under some topological assumptions, an exact Lagrangian cobordism is a Lagrangian pseudo-isotopy. This is a weaker version of a conjecture proposed by Biran and Cornea, which states that any exact Lagrangian cobordism is Hamiltonian isotopic to a Lagrangian suspension.
3

Structures quantiques de certaines sous-variétés lagrangiennes non-monotones

Ngô, Fabien 06 1900 (has links)
Soit (M,ω) un variété symplectique fermée et connexe.On considère des sous-variétés lagrangiennes α : L → (M,ω). Si α est monotone, c.- à-d. s’il existe η > 0 tel que ημ = ω, Paul Biran et Octav Conea ont défini une version relative de l’homologie quantique. Dans ce contexte ils ont déformé l’opérateur de bord du complexe de Morse ainsi que le produit d’intersection à l’aide de disques pseudo-holomorphes. On note (QH(L), ∗), l’homologie quantique de L munie du produit quantique. Le principal objectif de cette dissertation est de généraliser leur construction à un classe plus large d’espaces. Plus précisément on considère soit des sous-variétés presque monotone, c.-à-d. α est C1-proche d’un plongement lagrangian monotone ; soit les fibres toriques de variétés toriques Fano. Dans ces cas non nécessairement monotones, QH(L) va dépendre de certains choix, mais cela sera irrelevant pour les applications présentées ici. Dans le cas presque monotone, on s’intéresse principalement à des questions de déplaçabilité, d’uniréglage et d’estimation d’énergie de difféomorphismes hamiltoniens. Enfin nous terminons par une application combinant les deux approches, concernant la dynamique d’un hamiltonien déplaçant toutes les fibres toriques non-monotones dans CPn. / Let (M,ω) be a closed connected symplectic maniflod. We consider lagrangian submanifolds α : L →֒ (M,ω). If α is monotone, i.e. there exists η > 0 such that ημ = ω, Paul Biran and Octav Cornea defined a relative version of quantum homology. In this relative setting they deformed the boundary operator of the Morse complex as well as the intersection product by means of pseudoholomorphic discs. We note (QH(L,Λ), ∗) the quantum homology of L endowed with the quantum product. The main goal of this dissertation is to generalize their construction to a larger class of spaces. Namely, we consider : either the so called almost monotone lagrangian submanifolds, i.e. α is C1-close to a monotone lagrangian embedding, or the toric fibers of toric Fano manifolds. In those cases, we are able to generalize the constructions made by Biran and Cornea. However, in those non necessarily monotone cases, QH(L) will depend on some choices, but in a way irrelevant for the applications we have in mind. In the almost monotone case, we are mainly interested in displaceability, uniruling and ernegy estimates for hamiltonian diffeomorphsims. Finally, we end by an application, that combine the two approaches, concerning the dynamics of hamiltonian that displace all non-monotone toric fibers of CPn.
4

Étude des sous-variétés dans les variétés kählériennes, presque kählériennes et les variétés produit / Study of submanifolds of Kaehler manifolds, nearly Kaehler manifolds and product manifolds

Moruz, Marilena 03 April 2017 (has links)
Cette thèse est constituée de quatre chapitres. Le premier contient les notions de base qui permettent d'aborder les divers thèmes qui y sont étudiés. Le second est consacré à l'étude des sous-variétés lagrangiennes d'une variété presque kählérienne. J'y présente les résultats obtenus en collaboration avec Burcu Bektas, Joeri Van der Veken et Luc Vrancken. Dans le troisième, je m'intéresse à un problème de géométrie différentielle affine et je donne une classification des hypersphères affines qui sont isotropiques. Ce résultat a été obtenu en collaboration avec Luc Vrancken. Et enfin dans le dernier chapitre, je présente quelques résultats sur les surfaces de translation et les surfaces homothétiques, objet d'un travail en commun avec Rafael López. / Abstract in English not available
5

Structures quantiques de certaines sous-variétés lagrangiennes non-monotones

Ngô, Fabien 06 1900 (has links)
Soit (M,ω) un variété symplectique fermée et connexe.On considère des sous-variétés lagrangiennes α : L → (M,ω). Si α est monotone, c.- à-d. s’il existe η > 0 tel que ημ = ω, Paul Biran et Octav Conea ont défini une version relative de l’homologie quantique. Dans ce contexte ils ont déformé l’opérateur de bord du complexe de Morse ainsi que le produit d’intersection à l’aide de disques pseudo-holomorphes. On note (QH(L), ∗), l’homologie quantique de L munie du produit quantique. Le principal objectif de cette dissertation est de généraliser leur construction à un classe plus large d’espaces. Plus précisément on considère soit des sous-variétés presque monotone, c.-à-d. α est C1-proche d’un plongement lagrangian monotone ; soit les fibres toriques de variétés toriques Fano. Dans ces cas non nécessairement monotones, QH(L) va dépendre de certains choix, mais cela sera irrelevant pour les applications présentées ici. Dans le cas presque monotone, on s’intéresse principalement à des questions de déplaçabilité, d’uniréglage et d’estimation d’énergie de difféomorphismes hamiltoniens. Enfin nous terminons par une application combinant les deux approches, concernant la dynamique d’un hamiltonien déplaçant toutes les fibres toriques non-monotones dans CPn. / Let (M,ω) be a closed connected symplectic maniflod. We consider lagrangian submanifolds α : L →֒ (M,ω). If α is monotone, i.e. there exists η > 0 such that ημ = ω, Paul Biran and Octav Cornea defined a relative version of quantum homology. In this relative setting they deformed the boundary operator of the Morse complex as well as the intersection product by means of pseudoholomorphic discs. We note (QH(L,Λ), ∗) the quantum homology of L endowed with the quantum product. The main goal of this dissertation is to generalize their construction to a larger class of spaces. Namely, we consider : either the so called almost monotone lagrangian submanifolds, i.e. α is C1-close to a monotone lagrangian embedding, or the toric fibers of toric Fano manifolds. In those cases, we are able to generalize the constructions made by Biran and Cornea. However, in those non necessarily monotone cases, QH(L) will depend on some choices, but in a way irrelevant for the applications we have in mind. In the almost monotone case, we are mainly interested in displaceability, uniruling and ernegy estimates for hamiltonian diffeomorphsims. Finally, we end by an application, that combine the two approaches, concerning the dynamics of hamiltonian that displace all non-monotone toric fibers of CPn.

Page generated in 0.081 seconds