Spelling suggestions: "subject:"homologie dde floer"" "subject:"homologie dde vloer""
1 |
Intersections lagrangiennes pour les sous-variétés monotones et presque monotones / Lagrangian intersections for monotone and almost monotone submanifoldsKeddari, Nassima 26 September 2018 (has links)
Dans la première partie de cette thèse, on donne, sous certaines hypothèses, une minoration du nombre de points d’intersections d’une sous-variété Lagrangienne monotone L avec son image par une isotopie Hamiltonienne. Dans le cas où L est un espace K(pi, 1), et en particulier à courbure sectionnelle strictement négative, le minorant est 1 + beta1(L), où beta1 est le premier nombre de Betti à coefficients dans Z2. Une autre conséquence est la non-déplaçabilité d’un plongement Lagrangien monotone de RPn × K (où K est une sous-variété à courbure sectionnelle strictement négative telle que H1(K, Z) ≠ 0) dans certaines variétés symplectiques. Dans la seconde partie, on considère une sous-variété Lagrangienne monotone L non déplaçable. En utilisant l’homologie de Floer définie pour les Lagrangiennes qui sont C-1-proches de L, on obtient des informations sur son nombre de Maslov. De plus, si L peut être approchée par une suite de Lagrangiennes déplaçables, alors, sous certaines hypothèses topologiques sur L, l’énergie de déplacement des éléments de cette suite tend vers l’infini. / N the first part of the thesis, we give, under some hypotheses, a lower bound on the intersection number of a closed monotone Lagrangian submanifold L with its image by a generic Hamiltonianisotopy. For monotone Lagrangian submanifolds L which are K(pi, 1) and, in particular with negative sectional curvature, this bound is 1 + beta_1(L), where beta_1 is the first Betti number with coefficients in Z_2. Another consequence, is the non-displaceability of a monotone Lagrangian embedding of RPn x K (where K is a submanifold with negative sectional curvature such that H^1(K, Z) ≠ 0) in some symplectic manifolds. In the second part, given a closed monotone Lagrangian submanifold L, which is not displaceable, we use Floer homology defined on Lagrangians which are C^1 - close to L, to get information about it Maslov number. Besides, if L can be approached by a sequence of displaceable Lagrangians, then, under some topological assumptions on L, the displacement energy of the elements of this sequence converge to infinity.
|
2 |
Sur la topologie des sous-variétés lagrangiennesDamian, Mihai 15 November 2010 (has links) (PDF)
Nous définissons deux nouvelles versions de l'homologie de Floer, l'homologie de Floer-Novikov et l'homologie de Floer relevée. Nous les appliquons pour obtenir de nouveaux résultats sur la conjecture d'Arnold concernant sous-variétés lagrangiennes exactes du fibré cotagent et sur la conjecture d'Audin qui porte sur le nombre de Maslov d'une sous-variété lagrangienne asphérique de l'espace euclidien.
|
3 |
Sous-variétés lagrangiennes monotonesGadbled, Agnès 14 June 2008 (has links) (PDF)
La condition de monotonie pour les sous-variétés lagrangiennes a été introduite par Oh en 1993. C'est une version relative d'une condition définie par Floer pour les variétés symplectiques. Ces conditions permettent d'obtenir la bonne définition d'homologies de type Floer, en particulier de l'homologie de Floer lagrangienne, outil très utile pour l'étude de plongements lagrangiens.<br /> <br />Dans cette thèse, nous exploitons les hypothèses de monotonie en théorie de Floer sous deux aspects. Un premier aspect est l'étude d'une nouvelle famille d'exemples de variétés symplectiques monotones et de leurs sous-variétés lagrangiennes monotones. Cette famille d'exemples est construite par découpe symplectique à partir du cotangent de variétés munies d'une action libre du cercle. Un second aspect est la construction d'une homologie de type Floer-Novikov pour des sous-variétés lagrangiennes d'un cotangent qui sont dites monotones sur les lacets. On en déduit de nouveaux résultats d'obstruction de plongements lagrangiens monotones sur les lacets dans le cotangent de variétés qui fibrent sur le cercle.
|
4 |
La suite spectrale de Leray-Serre en homologie de Floer des varietes symplectiques compactes a bord de type contactOANCEA, ALEXANDRU 18 September 2003 (has links) (PDF)
Les groupes d'homologie de Floer pour varietes compactes a bord de type contact n'ont pas de correspondant topologique, a la difference des varietes fermees. Le but de cette these est d'en donner des proprietes qualitatives lorsque la variete est munie de structures topologiques supplementaires. Nous avons en vue les fibrations symplectiques (eventuellement triviales). Le premier chapitre de la these comprend deux parties : la premiere compare les differentes constructions de l'homologie de Floer et met en relief le principe specifique aux varietes a bord, a savoir la necessite d'obtenir des estimations a priori sur les solutions de l'equation de Floer. On explique comment les groupes d'homologie de Floer sont relies a la conjecture de Weinstein et on calcule par une methode nouvelle la cohomologie d'une boule dans un espace vectoriel complexe. La deuxieme partie presente une extension de la definition des groupes d'homologie de Floer par des hamiltoniens ``asymptotiquement lineaires", extension que nous utiliserons par la suite. Nous travaillons directement dans des varietes non compactes convexes a l'infini, qui sont des completees symplectiques de varietes compactes a bord de type contact. Le deuxieme chapitre demontre la formule de Kunneth en homologie de Floer pour un produit de varietes a bord de type contact restreint. Ceci correspond au cas d'une fibration triviale. Le troisieme chapitre donne une interpretation de la suite spectrale de Leray-Serre classique en termes exclusifs d'homologie de Morse, qui constitue un modele simple pour l'homologie de Floer. Le quatrieme chapitre etudie l'existence d'une suite spectrale de Leray-Serre pour un certain type de fibrations symplectiques a bord au-dessus d'une base fermee. L'existence de la suite spectrale est etablie pour les fibres en droites hermitiens a courbure negative. Dans le cas general, son existence est ramenee a une estimation d'energie pour trajectoires de Floer, qui est conjecturee.
|
5 |
Exact Lagrangian cobordism and pseudo-isotopySuárez López, Lara Simone 09 1900 (has links)
Dans cette thèse, on étudie les propriétés des sous-variétés lagrangiennes dans une variété symplectique en utilisant la relation de cobordisme lagrangien. Plus précisément, on s'intéresse à déterminer les conditions pour lesquelles les cobordismes lagrangiens élémentaires sont en fait triviaux.
En utilisant des techniques de l'homologie de Floer et le théorème du s-cobordisme on démontre que, sous certaines hypothèses topologiques, un cobordisme lagrangien exact est une pseudo-isotopie lagrangienne. Ce resultat est une forme faible d'une conjecture due à Biran et Cornea qui stipule qu'un cobordisme lagrangien exact est hamiltonien isotope à une suspension lagrangianenne. / In this thesis we study the properties of Lagrangian submanifolds of a symplectic manifold by using the relation of Lagrangian cobordism. More precisely, we are interested in determining when an elementary Lagrangian cobordism is trivial.
Using techniques coming from Floer homology and the s-cobordism theorem, we show that under some topological assumptions, an exact Lagrangian cobordism is a Lagrangian pseudo-isotopy. This is a weaker version of a conjecture proposed by Biran and Cornea, which states that any exact Lagrangian cobordism is Hamiltonian isotopic to a Lagrangian suspension.
|
6 |
Growth rate of Legendrian contact homology and dynamics of Reeb flowsRibeiro De Resende Alv. Marcelo 05 December 2014 (has links)
L'objectif de cette thèse est d'investiguer la relation entre l'homologie de contact Legendrienne d'une variété de contact de dimension 3, et l'entropie topologique des flots de Reeb associés à cette variété de contact. Une variété de contact est une variété differentielle M de dimension impaire munie d'un champ d'hyperplan Y maximalement non-intégrable. Les champs de Reeb sont une classe speciale de champs de vecteurs sur M qui sont définis en utilisant la structure de contact; ils préservent la structure de contact et ils préservent aussi une forme de volume sur M.<p><p>L'entropie topologique h est un nombre non-négatif qu'on associe à un système dynamique et qui mesure la complexité de ce système. Si un système dynamique est d'entropie topologique positive, on dit que ce système est chaotique.<p><p>Comme les champs de Reeb sont construits en utilisant la structure de contact Y, il est naturel d'attendre que la topologie de (M,Y) influence la dynamique des champs de Reeb auxquels elle est associée. En particulier, il est naturel de se demander s'il existe des variétés de contact dont tous les champs de Reeb associés ont une entropie topologique positive. Si une varieté de contact a cette propriété, on dira qu'elle est d'entropie positive. <p><p>Macarini et Schlenk ont été les premiers à étudier cette question. Ils ont montré qu'il existe un grand ensemble de variétés différentielles Q, telles que le fibré unitaire T_1 Q muni de sa structure de contact canonique Y_{can} est d'entropie topologique positive. Plus précisement, ils ont utilisé l'homologie de Floer Lagrangienne, qui est un invariant symplectique, pour montrer que si Q est rationnellement hyperbolique alors (T_1 Q,Y_{can}) est d'entropie positive. <p><p>Pour étudier l'entropie topologique dans le cas où M n'est pas un fibré unitaire on substitue à l'homologie de Floer Lagrangienne un invariant plus naturel des variétés de contact: l'homologie de contact Legendrienne à bandes. On demontre dans cette thèse que l'homologie de contact Legendrienne à bandes est bien adaptée pour étudier l'entropie topologique. Plus précisement, on montre que quand l'homologie de contact Legendrienne à bandes est bien définie pour un champ de Reeb associé à (M,Y) et sa croissance est exponentielle, alors (M,Y) est d'entropie positive. <p><p>On utilise ce résultat pour trouver des nouveaux exemples de variétés de contact de dimension 3 qui sont d'entropie positive. On montre même qu'il y a des variétés de dimension 3 qui possèdent une infinité de structures de contact différentes qui sont toutes d'entropie positive. Ces résultats et bien d'autres nous permettent de conjecturer que la ``plupart' des variétés de contact de dimension 3 sont d'entropie positive. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
7 |
Homologie symplectique Tⁿ-équivariante pour les variétés toriques hamiltoniennes / Tⁿ-equivariant symplectic homology for toric hamiltonian manifoldsMennesson, Pierre 22 October 2018 (has links)
Cette thèse établit l'existence d'une variante de l'homologie de Floer de type Morse-Bott. Étant donnés une variété torique (W²ⁿ, ω, µ) et un hamiltonien H : W × S ¹ → ℝ invariant par l’action du tore de dimension n Tⁿ, , les orbites de H sont stables par l’action torique. Cette dernière admettant des points fixes dans W, elle n’est pas libre, pareillement pour celle induit sur les lacets de W et il est, a priori, impossible de construire une théorie de Morse-Bott équivariante au niveau de C∞(S¹, W)/Tⁿ. Nous remédions à ce problème en adoptant la construction de Borel : nous choisissons un espace E contractile muni d’une action libre du tore regardons l’homologie de Morse-Bott en dimension infinie de l’espace (C∞(S¹, W) × E)/Tⁿ où Tⁿ agit cette fois de manière diagonale sur le produit.L’homologie obtenue est un invariant pour les variétés symplectiques toriques et nous le calculons dans le cas d’une variété fermée. / This thesis establishes the existence of a version of Floer homology in a Morse-Bottcontext. Given a toric manifold (Wⁿ, ω, µ) and a hamiltonian H : W × S¹ → ℝ invariant bythe action of the torus Tⁿ, the periodical orbits of H are stable by the toric action.The latter admits fix points in W and hence it not free, neither one induced on the spaceof the loops of W and it is, a priori, impossible to establish a equivariant infinite-dimensionalMorse-Bott theory on C∞(S¹, W)/Tⁿ. We deal with this problem using Borel’s construction : we choose a space contractible E witha free action from the torus and look at the infinite-dimensional Morse-Bott homology of thespace (C∞(S¹, W) × E)/Tⁿ where Tⁿ act in a diagonal way on the product.We obtain an invariant for symplectic toric manifold and computes it for a closed manifold.
|
8 |
Groupes de cobordisme lagrangien immergé et structure des polygones pseudo-holomorphesPerrier, Alexandre 12 1900 (has links)
No description available.
|
9 |
Homologie instanton-symplectique : somme connexe, chirurgie de Dehn, et applications induites par cobordismes / Symplectic instanton homology : connected sum, Dehn surgery, and maps from cobordismsCazassus, Guillem 12 April 2016 (has links)
L'homologie instanton-symplectique est un invariant associé à une variété de dimension trois close orientée, qui a été dé?ni par Manolescu et Woodward, et qui correspond conjecturalement à une version symplectique d'une homologie des instantons de Floer. Dans cette thèse nous étudions le comportement de cet invariant sous l'effet d'une somme connexe, d'une chirurgie de Dehn, et d'un cobordisme de dimension quatre. Nous établissons une formule de Künneth pour la somme connexe : si Y et Y' désignent deux variétés closes orientées de dimension trois, l'homologie instanton-symplectique associée à leur somme connexe est isomorphe à la somme directe du produit tensoriel de leurs groupes d'homologie instantonsymplectique respectifs, et de leur produit de torsion (après décalage des degrés). Nous définissons des versions tordues de cette homologie, et prouvons un analogue de la suite exacte de Floer, reliant les groupes associés à une triade de chirurgie. Cette suite exacte nous permet de calculer le rang des groupes associés à des familles de variétés, notamment les revêtements doubles ramifiés d'entrelacs quasi-alternés, des chirurgies entières de grande pente le long de certains noeuds, ainsi que certaines variétés obtenues par plombage de fibrés en disques au-dessus de sphères. Nous définissons enfin des invariants pour des cobordismes de dimension 4 prenant la forme d'applications entre groupes d'homologie instantonsymplectique des bords, et prouvons que deux des morphismes intervenant dans la suite exacte de chirurgie s'interprètent comme de telles applications, associées aux cobordismes d'attachement d'anses. Nous donnons également un critère d'annulation pour de telles applications associées à des éclatements. / Symplectic instanton homology is an invariant for closed oriented three-manifolds, defined by Manolescu and Woodward, which conjecturally corresponds to a symplectic version of a variant of Floer's instanton homology. In this thesis we study the behaviour of this invariant under connected sum, Dehn surgery, and four-dimensional cobordisms. We prove a Künneth-type formula for the connected sum: let Y and Y' be two closed oriented three-manifolds, we show that the symplectic instanton homology of their connected sum is isomorphic to the direct sum of the tensor product of their symplectic instanton homology, and a shift of their torsion product. We define twisted versions of this homology, and then prove an analog of the Floer exact sequence, relating the invariants of a Dehn surgery triad. We use this exact sequence to compute the rank of the groups associated to branched double covers of quasi-alternating links, some plumbings of disc bundles over spheres, and some integral Dehn surgeries along certain knots. We then define invariants for four dimensional cobordisms as maps between the symplectic instanton homology of the two boundaries. We show that among the three morphisms in the surgery exact sequence, two are such maps, associated to the handle-attachment cobordisms. We also give a vanishing criteria for such maps associated to blow-ups.
|
10 |
Topologie symplectique qualitative et quantitative des fibrés cotangentsBroćić, Filip 05 1900 (has links)
Cette thèse explore les propriétés quantitatives et qualitatives des fibrés cotangents T∗M de variétés lisses fermées M, d’un point de vue symplectique.
Les aspects quantitatifs concernent le problème d’empilement de boules symplectiques dans un voisinage ouvert W de la section nulle. Nous introduisons une fonction de type distance ρW sur la section nulle M en utilisant l’empilement symplectique de deux boules. Dans le cas où W est le fibré en disques unitaire associé à une métrique riemannienne g, nous montrons comment reconstruire la métrique g à partir de ρW. Comme étape intermédiaire, nous construisons un plongement symplectique de la boule B2n(2/√π) de capacité 4 dans le produit de disques unitaires lagrangiens Bn(1) × Bn(1). Une telle construction implique la conjecture de Viterbo forte pour Bn(1) × Bn(1).
Nous donnons aussi une borne sur le rayon relatif de Gromov Gr(M, W) lorsque M admet une action non-contractile de S1. La borne est donnée en termes de l’action symplectique des relevés des orbites non-contractiles de l’action de S1. Nous donnons aussi des exemples de cas où cette borne est optimale. Ce résultat fait partie d’un travail en collaboration avec Dylan Cant. La deuxième partie du travail est liée aux aspects qualitatifs. Nous montrons l’existence d’orbites périodiques de systèmes hamiltoniens sur T∗M pour une grande classe d’hamiltoniens.
Un autre aspect qualitatif est la preuve de la conjecture de la corde Arnol’d pour les sous-variétés legendriennes conormales dans le fibré en co-sphères S∗M. Cette partie de la thèse est un travail conjoint avec Dylan Cant et Egor Shelukhin. Nous montrons que pour une sous-variété fermée donnée N ⊂ M, il existe une corde de Reeb non-constante dans (S∗M,α) avec extrémités sur ΛN := ν∗N ∩S∗M, pour toute forme de contact α sur S∗M qui induit la structure de contact standard. / This dissertation explores the quantitative and qualitative properties of the cotangent bundles T ∗M of a closed smooth manifolds M , from the symplectic point of view. Quantitative aspects involve packing the open neighborhood W of the zero section with symplectic balls. We introduce a distance-like function ρW on the zero section M using the symplectic packing of two balls. In the case when W is the unit disc-cotangent bundle associated to the Riemannian metric g, we show how to recover the metric g from ρW . As an intermediate step, we construct a symplectic embedding from the ball B2n(2/√π) of capacity 4 to the product of Lagrangian unit discs Bn(1) × Bn(1). Such a construction implies the
strong Viterbo conjecture for Bn(1) × Bn(1). We also give a bound on the relative Gromov width Gr(M, W) when M admits a non-contractible S1-action. The bound is given in terms of the symplectic action of the lift of non-contractible orbits of the S1-action. We also provide examples of when such a bound is sharp. This result is part of the joint work with Dylan Cant. The second part of this joint work is related to the qualitative aspects. We show the existence of periodic orbits of
Hamiltonian systems on T ∗M for a large class of Hamiltonians. Another qualitative aspect is proof of the Arnol’d chord conjecture for conormal Legendrians in the co-sphere bundle S∗M . This part of the dissertation is joint work with
Dylan Cant and Egor Shelukhin. We show that for a given closed submanifold N ⊂ M there exists a non-constant Reeb chord in (S∗M, α) with endpoints on ΛN := ν∗N ∩ S∗M, for arbitrary contact form α on S∗M which induces standard contact structure.
|
Page generated in 0.078 seconds