Spelling suggestions: "subject:"contact topology"" "subject:"acontact topology""
1 |
Open book decompositions in high dimensional contact manifoldsElmas, Gokhan 27 May 2016 (has links)
In this thesis, we study the open book decompositions in high dimensional contact manifolds. We focus on the results about open book decomposition of manifolds and their relationship with contact geometry.
|
2 |
A Tourist's Account of Characteristic Foliations on Convex Surfaces in 3-D Contact GeometryVolk, Luke 01 October 2019 (has links)
We begin with a rapid introduction to the theory of contact topology, first spending more time than you would probably want on developing the notion of contact manifold before launching right into the thick of the theory. The tools of characteristic foliations and convex surfaces are introduced next, concluding with an overview of Legendrian knots in contact 3-manifolds. Next, we develop a number of lemmas as tools for dealing with characteristic foliations, concluding with some sightseeing with regards to the theory of so-called "movies", allowing a glimpse into the workings of a theorem due to Colin:
Two smoothly isotopic embeddings of S^2 into a tight contact 3-manifold inducing the same characteristic foliation are necessarily contact isotopic.
We finish with an original observation that Colin’s theorem can be used to replace a key step in Eliashberg and Fraser’s classification of topologically trivial knots, thus providing an alternate proof of that result and thereby highlighting the power of the aforementioned theorem. We provide a simplification of this proof using intermediate results we encountered along the way.
|
3 |
Théorèmes de Künneth en homologie de contactZenaidi, Naim 24 September 2013 (has links)
L'homologie de contact est un invariant homologique pour variétés de contact dont la définition est basée sur l'utilisation de courbes holomorphes. Ce travail de thèse concerne l'étude de cet invariant dans le cas des produits de contact. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
4 |
Growth rate of Legendrian contact homology and dynamics of Reeb flowsRibeiro De Resende Alv. Marcelo 05 December 2014 (has links)
L'objectif de cette thèse est d'investiguer la relation entre l'homologie de contact Legendrienne d'une variété de contact de dimension 3, et l'entropie topologique des flots de Reeb associés à cette variété de contact. Une variété de contact est une variété differentielle M de dimension impaire munie d'un champ d'hyperplan Y maximalement non-intégrable. Les champs de Reeb sont une classe speciale de champs de vecteurs sur M qui sont définis en utilisant la structure de contact; ils préservent la structure de contact et ils préservent aussi une forme de volume sur M.<p><p>L'entropie topologique h est un nombre non-négatif qu'on associe à un système dynamique et qui mesure la complexité de ce système. Si un système dynamique est d'entropie topologique positive, on dit que ce système est chaotique.<p><p>Comme les champs de Reeb sont construits en utilisant la structure de contact Y, il est naturel d'attendre que la topologie de (M,Y) influence la dynamique des champs de Reeb auxquels elle est associée. En particulier, il est naturel de se demander s'il existe des variétés de contact dont tous les champs de Reeb associés ont une entropie topologique positive. Si une varieté de contact a cette propriété, on dira qu'elle est d'entropie positive. <p><p>Macarini et Schlenk ont été les premiers à étudier cette question. Ils ont montré qu'il existe un grand ensemble de variétés différentielles Q, telles que le fibré unitaire T_1 Q muni de sa structure de contact canonique Y_{can} est d'entropie topologique positive. Plus précisement, ils ont utilisé l'homologie de Floer Lagrangienne, qui est un invariant symplectique, pour montrer que si Q est rationnellement hyperbolique alors (T_1 Q,Y_{can}) est d'entropie positive. <p><p>Pour étudier l'entropie topologique dans le cas où M n'est pas un fibré unitaire on substitue à l'homologie de Floer Lagrangienne un invariant plus naturel des variétés de contact: l'homologie de contact Legendrienne à bandes. On demontre dans cette thèse que l'homologie de contact Legendrienne à bandes est bien adaptée pour étudier l'entropie topologique. Plus précisement, on montre que quand l'homologie de contact Legendrienne à bandes est bien définie pour un champ de Reeb associé à (M,Y) et sa croissance est exponentielle, alors (M,Y) est d'entropie positive. <p><p>On utilise ce résultat pour trouver des nouveaux exemples de variétés de contact de dimension 3 qui sont d'entropie positive. On montre même qu'il y a des variétés de dimension 3 qui possèdent une infinité de structures de contact différentes qui sont toutes d'entropie positive. Ces résultats et bien d'autres nous permettent de conjecturer que la ``plupart' des variétés de contact de dimension 3 sont d'entropie positive. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
5 |
Embedded contact knot homology and a surgery formulaBrown, Thomas Alexander Gordon January 2018 (has links)
Embedded contact homology is an invariant of closed oriented contact 3-manifolds first defined by Hutchings, and is isomorphic to both Heegard Floer homology (by the work of Colin, Ghiggini and Honda) and Seiberg-Witten Floer cohomology (by the work of Taubes). The embedded contact chain complex is defined by counting closed orbits of the Reeb vector field and certain pseudoholomorphic curves in the symplectization of the manifold. As part of their proof that ECH=HF, Colin, Ghiggini and Honda showed that if the contact form is suitably adapted to an open book decomposition of the manifold, then embedded contact homology can be computed by considering only orbits and differentials in the complement of the binding of the open book; this fact was then in turn used to define a knot version of embedded contact homology, denoted ECK, where the (null-homologous) knot in question is given by the binding. In this thesis we start by generalizing these results to the case of rational open book decompositions, allowing us to define ECK for rationally null-homologous knots. In its most general form this is a bi-filtered chain complex whose homology yields ECH of the closed manifold. There is also a hat version of ECK in this situation which is equipped with an Alexander grading equivalent to that in the Heegaard Floer setting, categorifies the Alexander polynomial, and is conjecturally isomorphic to the hat version of knot Floer homology. The main result of this thesis is a large negative $n$-surgery formula for ECK. Namely, we start with an (integral) open book decomposition of a manifold with binding $K$ and compute, for all $n$ greater than or equal to twice the genus of $K$, ECK of the knot $K(-n)$ obtained by performing ($-n$)-surgery on $K$. This formula agrees with Hedden's large $n$-surgery formula for HFK, providing supporting evidence towards the conjectured equivalence between the two theories. Along we the way, we also prove that ECK is, in many cases, independent of the choices made to define it, namely the almost complex structure on the symplectization and the homotopy type of the contact form. We also prove that, in the case of integral open book decompositions, the hat version of ECK is supported in Alexander gradings less than or equal to twice the genus of the knot.
|
6 |
P-bigon right-veeringness and overtwisted contact structuresRamirez Aviles, Camila Alexandra 01 May 2017 (has links)
A contact structure is a maximally non-integrable hyperplane field $\xi$ on an odd-dimensional manifold $M$. In $3$-dimensional contact geometry, there is a fundamental dichotomy, where a contact structure is either tight or overtwisted. Making use of Giroux's correspondence between contact structures and open books for $3$-dimensional manifolds, Honda, Kazez, and Mat\'{i}c proved that verifying whether a mapping class is right-veering or not gives a way of detecting tightness of the compatible contact structure. As a counter-part to right-veering mapping classes, right-veering closed braids have been studied by Baldwin and others. Ito and Kawamuro have shown how various results on open books can be translated to results on closed braids; introducing the notion of quasi right-veering closed braids to provide a sufficient condition which guarantees tightness.
We use the related concept of $P$-bigon right-veeringness for closed braids to show that given a $3$-dimensional contact manifold $(M, \xi)$ supported by an open book $(S, \phi)$, if $L \subset (M, \xi)$ is a non-$P$-bigon right-veering transverse link in pure braid position with respect to $(S, \phi)$, performing $0$-surgery along $L$ produces an overtwisted contact manifold $(M', \xi')$. Furthermore, if we suppose $L \subset (M, \xi)$ is a pure and non-quasi right-veering braid with respect to $(S, \phi)$, performing $p$-surgery along $L$, for $p \geq 0$, gives rise to an open book $(S', \phi')$ which supports an overtwisted contact manifold $(M', \xi')$.
|
7 |
On fillability of contact manifoldsNiederkrüger, Klaus 11 December 2013 (has links) (PDF)
The aim of this text is to give an accessible overview to some recent results concerning contact manifolds and their symplectic fillings. In particular, we work out the weakest compatibility conditions between a symplectic manifold and a contact structure on its boundary to still be able to obtain a sensible theory (Chapter II), furthermore we prove two results (Theorem A and B in Section I.4) that show how certain submanifolds inside a contact manifold obstruct the existence of a symplectic filling or influence its topology. We conclude by giving several constructions of contact manifolds that for different reasons do not admit a symplectic filling.
|
8 |
Effect of Legendrian surgery and an exact sequence for Legendrian links / Effet de chirurgies Legendriennes et une suite exacte de entrelacements LegendriensEslami Rad, Anahita 31 August 2012 (has links)
This thesis is devoted to the study of the effect of Legendrian surgery on contact manifolds. In particular, we study the effect of this surgery on the Reeb dynamics of the contact manifold on which we perform such a surgery along Legendrian links. We obtain an exact sequence of cyclic Legendrian homology for the Legendrian links. Then we present the applications in 3-dimension and higher dimensions. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
9 |
Sur les relations entre la topologie de contact et la dynamique de champs de Reeb / On the relationship between contact topology and the dynamics of Reeb flowsAlves, Marcelo Ribeiro de Resende 19 November 2015 (has links)
L'objectif de cette thèse est d'investiguer les relations entre les propriétés topologiques d'une variété de contact et la dynamique des flots de Reeb dans la variété de contact en question. Dans la première partie de la thèse, nous établissons une relation entre la croissance de l’homologie de contact cylindrique d'une variété de contact et l'entropie topologique des flots de Reeb dans cette variété de contact. Nous utilisons ce résultat dans les chapitres 8 et 9 pour montrer l'existence d'un grand nombre des nouvelles variétés de contact de dimension 3 dans lesquelles tous les flots de Reeb ont entropie topologique positive. Dans le chapitre 10, nous prouvons un résultat obtenu en collaboration avec Chris Wendl qui donne une obstruction dynamique pour qu'une variété de contact de dimension 3 soit planaire. Cette obstruction est utilisée pour montrer que, si une variété de contact de dimension 3 possède un flot de Reeb qui est uniformément hyperbolique (Anosov) avec variétés invariantes traversalement orientables, alors cette variété de contact n'est pas planaire. Dans le chapitre 11, nous étudions l'entropie topologique des flots de Reeb dans les fibrés unitaires des surfaces de genre plus grand que 1. Nous montrons que la restriction de chaque flot de Reeb en au ensemble limite de presque toute fibre unitaire a une entropie topologique positive. / In this thesis we study the relations between the contact topological properties of contact manifolds and the dynamics of Reeb flows. On the first part of the thesis, we establish a relation between the growth of the cylindrical contact homology of a contact manifold and the topological entropy of Reeb flows on this manifold. We build on this to show in Chapter 6 that if a contact manifold M admits a hypertight contact form A for which the cylindrical contact homology has exponential homotopical growth rate, then the Reeb flow of every contact form on M has positive topological entropy. Using this result, we exhibit in Chapter 8 and 9 numerous new examples of contact 3-manifolds on which every Reeb flow has positive topological entropy. On Chapter 10 we present a joint result with Chris Wendl that gives a dynamical obstruction for contact 3-manifold to be planar. We then use the obstruction to show that a contact 3-manifold that possesses a Reeb flow that is a transversely orientable Anosov flow, cannot be planar. On Chapter 11 we study the topological entropy for Reeb flows on spherizations. The result we obtain is a refinement of a result of Macarini and Schlenk, that states that every Reeb flow on the unit tangent bundle U of a high genus surface S has positive topological entropy. We show that for any Reeb flow on U, the omega-limit of almost every Legendrian fiber is a compact invariant set on which the dynamics has positive topological entropy.
|
10 |
Existência implicada de órbitas periódicas para fluxos de Reeb em S¹ x S² / Implied existence of closed orbits for the Reeb flows in S¹ x S²Salazar, Diego Alfonso Sandoval 29 June 2017 (has links)
Consideramos o fluxo de Reeb associado a uma forma de contato em S¹ x S² que induz a estrutura de contato tight. Assumimos que o fluxo admite um par de órbitas periódicas L0 e L1 cujo link L = L0 L1 é transversalmente isotópico a ( S¹ x )( S¹ x ), em que n = (0,0,1) e s = (0,0,1) são os pólos norte e sul de S², respectivamente. O objetivo é provar que, nestas condições, existem infinitas órbitas periódicas no complementar desse link cujas classes de homotopia no complementar do link são prescritas de acordo com os números de rotação de L0 e L1. / We consider the Reeb flow associated to a contact form on S¹ x S² which induces a tight contact structure. We assume that the flow admits a pair of closed orbits L0 and L1 whose link L = L0 L1 is transversely isotopic to (S¹ x)(S¹ x), where n = (0,0,1) and s =(0,0,1) are the north and south poles of S², respectively. The main goal is to prove that, under these conditions, there exit infinitely many closed orbits in the complement of this link whose homotopy classes in the complement of this link are prescribed according to the rotation numbers of L0 and L1.
|
Page generated in 0.0401 seconds