Spelling suggestions: "subject:"sousvariétés lagrangienne"" "subject:"sousvariétés lagrangien""
1 |
Représentations décomposables et sous-variétés lagrangiennes des espaces de modules associés aux groupes de surfacesSchaffhauser, Florent 30 September 2005 (has links) (PDF)
Le principal résultat de la thèse est un théorème de convexité réel pour les applications moment à valeurs dans un groupe de Lie. Ce théorème est appliqué à la construction de sous-variétés lagrangiennes dans les quotients quasi-hamiltoniens, en particulier dans les espaces de représentations de groupes de surfaces. La notion de représentation décomposable fournit une interprétation géométrique de la sous-variété lagrangienne obtenue.
|
2 |
Sur la topologie des sous-variétés lagrangiennesDamian, Mihai 15 November 2010 (has links) (PDF)
Nous définissons deux nouvelles versions de l'homologie de Floer, l'homologie de Floer-Novikov et l'homologie de Floer relevée. Nous les appliquons pour obtenir de nouveaux résultats sur la conjecture d'Arnold concernant sous-variétés lagrangiennes exactes du fibré cotagent et sur la conjecture d'Audin qui porte sur le nombre de Maslov d'une sous-variété lagrangienne asphérique de l'espace euclidien.
|
3 |
Structures quantiques de certaines sous-variétés lagrangiennes non-monotonesNgô, Fabien 06 1900 (has links)
Soit (M,ω) un variété symplectique fermée et connexe.On considère des sous-variétés
lagrangiennes α : L → (M,ω). Si α est monotone, c.- à-d. s’il existe η > 0 tel que ημ = ω,
Paul Biran et Octav Conea ont défini une version relative de l’homologie quantique. Dans ce contexte ils ont déformé l’opérateur de bord du complexe de
Morse ainsi que le produit d’intersection à l’aide de disques pseudo-holomorphes. On
note (QH(L), ∗), l’homologie quantique de L munie du produit quantique.
Le principal objectif de cette dissertation est de généraliser leur construction à un
classe plus large d’espaces. Plus précisément on considère soit des sous-variétés presque
monotone, c.-à-d. α est C1-proche d’un plongement lagrangian monotone ; soit les fibres
toriques de variétés toriques Fano. Dans ces cas non nécessairement monotones, QH(L)
va dépendre de certains choix, mais cela sera irrelevant pour les applications présentées
ici.
Dans le cas presque monotone, on s’intéresse principalement à des questions de
déplaçabilité, d’uniréglage et d’estimation d’énergie de difféomorphismes hamiltoniens.
Enfin nous terminons par une application combinant les deux approches, concernant
la dynamique d’un hamiltonien déplaçant toutes les fibres toriques non-monotones dans
CPn. / Let (M,ω) be a closed connected symplectic maniflod. We consider lagrangian submanifolds
α : L →֒ (M,ω). If α is monotone, i.e. there exists η > 0 such that ημ = ω, Paul Biran and Octav Cornea defined a relative version of quantum homology. In this
relative setting they deformed the boundary operator of the Morse complex as well as the
intersection product by means of pseudoholomorphic discs. We note (QH(L,Λ), ∗) the quantum homology of L endowed with the quantum product.
The main goal of this dissertation is to generalize their construction to a larger class
of spaces. Namely, we consider : either the so called almost monotone lagrangian submanifolds,
i.e. α is C1-close to a monotone lagrangian embedding, or the toric fibers of
toric Fano manifolds. In those cases, we are able to generalize the constructions made by Biran and Cornea. However, in those non necessarily monotone cases, QH(L) will depend on some
choices, but in a way irrelevant for the applications we have in mind.
In the almost monotone case, we are mainly interested in displaceability, uniruling
and ernegy estimates for hamiltonian diffeomorphsims.
Finally, we end by an application, that combine the two approaches, concerning the
dynamics of hamiltonian that displace all non-monotone toric fibers of CPn.
|
4 |
Étude des sous-variétés dans les variétés kählériennes, presque kählériennes et les variétés produit / Study of submanifolds of Kaehler manifolds, nearly Kaehler manifolds and product manifoldsMoruz, Marilena 03 April 2017 (has links)
Cette thèse est constituée de quatre chapitres. Le premier contient les notions de base qui permettent d'aborder les divers thèmes qui y sont étudiés. Le second est consacré à l'étude des sous-variétés lagrangiennes d'une variété presque kählérienne. J'y présente les résultats obtenus en collaboration avec Burcu Bektas, Joeri Van der Veken et Luc Vrancken. Dans le troisième, je m'intéresse à un problème de géométrie différentielle affine et je donne une classification des hypersphères affines qui sont isotropiques. Ce résultat a été obtenu en collaboration avec Luc Vrancken. Et enfin dans le dernier chapitre, je présente quelques résultats sur les surfaces de translation et les surfaces homothétiques, objet d'un travail en commun avec Rafael López. / Abstract in English not available
|
5 |
Opérateurs de Dirac sur les sous-variétésGINOUX, Nicolas 10 September 2002 (has links) (PDF)
Les travaux effectués dans cette thèse portent sur l'étude du spectre de deux opérateurs de Dirac définis sur une sous-variété. Dans un premier temps, nous minorons la plus petite valeur propre d'un opérateur canoniquement associé à l'opérateur de Dirac-Witten. Nous montrons par la suite que l'égalité dans ces minorations ne peut être atteinte que si la sous-variété admet un spineur dit de Killing tordu. Dans un second temps, nous majorons les petites valeurs propres de l'opérateur de Dirac de la sous-variété tordu par son fibré normal. Complétant les travaux de C. Bär pour les hypersurfaces de l'espace hyperbolique, nous donnons de nouvelles estimations pour les hypersurfaces de variétés admettant des spineurs-twisteurs. Nous étendons enfin ces résultats aux sous-variétés de certaines variétés kählériennes. L'existence de spineurs de Killing kählériens sur de telles variétés permet d'estimer les petites valeurs propres des sous-variétés CR. Nous obtenons comme conséquence un théorème de comparaison de valeurs propres pour les sous-variétés kählériennes de l'espace projectif complexe.
|
6 |
Aspects semi-classiques de la quantification géométriqueCHARLES, Laurent 15 December 2000 (has links) (PDF)
Dans cette thèse, nous étudions les opérateurs de Berezin-Toeplitz sur les variétés kähleriennes et leur généralisation aux variétés symplectiques compactes. Le premier chapitre porte sur l'intégrale de Feynman : nous exprimons le noyau du propagateur quantique à l'aide d'une intégrale de Wiener en fonction de l'action classique. Dans le second chapitre, nous proposons un ansatz pour le noyau des opérateurs de Berezin-Toeplitz, grâce auquel on donne une preuve directe des résultats connus sur ces opérateurs et l'on décrit le calcul des symboles covariants et contravariants en fonction de la métrique kählerienne. Ceci mène à la définition de plusieurs star-produits sur les variétés kähleriennes par une formule universelle. Dans le troisième chapitre, nous généralisons l'ansatz précédent afin de quantifier les sous-variétés lagrangiennes des variétés kähleriennes. Nous appliquons ceci de diverses manières : construction de quasi-modes, énoncé des conditions de Bohr-Sommerfeld, quantification des symplectomorphismes, réalisation d'équivalence microlocale. En comparaison avec la théorie des opérateurs pseudodifférentiels, les invariants de la géométrie des cotangents sont remplacés par des invariants de la géométrie kählerienne. Dans le dernier chapitre, nous entreprenons la généralisation des résultats précédents aux variétés symplectiques compactes, notamment nous quantifions les sous-variétés lagrangiennes et décrivons le calcul symbolique des opérateurs de Berezin-Toeplitz.
|
7 |
Structures quantiques de certaines sous-variétés lagrangiennes non-monotonesNgô, Fabien 06 1900 (has links)
Soit (M,ω) un variété symplectique fermée et connexe.On considère des sous-variétés
lagrangiennes α : L → (M,ω). Si α est monotone, c.- à-d. s’il existe η > 0 tel que ημ = ω,
Paul Biran et Octav Conea ont défini une version relative de l’homologie quantique. Dans ce contexte ils ont déformé l’opérateur de bord du complexe de
Morse ainsi que le produit d’intersection à l’aide de disques pseudo-holomorphes. On
note (QH(L), ∗), l’homologie quantique de L munie du produit quantique.
Le principal objectif de cette dissertation est de généraliser leur construction à un
classe plus large d’espaces. Plus précisément on considère soit des sous-variétés presque
monotone, c.-à-d. α est C1-proche d’un plongement lagrangian monotone ; soit les fibres
toriques de variétés toriques Fano. Dans ces cas non nécessairement monotones, QH(L)
va dépendre de certains choix, mais cela sera irrelevant pour les applications présentées
ici.
Dans le cas presque monotone, on s’intéresse principalement à des questions de
déplaçabilité, d’uniréglage et d’estimation d’énergie de difféomorphismes hamiltoniens.
Enfin nous terminons par une application combinant les deux approches, concernant
la dynamique d’un hamiltonien déplaçant toutes les fibres toriques non-monotones dans
CPn. / Let (M,ω) be a closed connected symplectic maniflod. We consider lagrangian submanifolds
α : L →֒ (M,ω). If α is monotone, i.e. there exists η > 0 such that ημ = ω, Paul Biran and Octav Cornea defined a relative version of quantum homology. In this
relative setting they deformed the boundary operator of the Morse complex as well as the
intersection product by means of pseudoholomorphic discs. We note (QH(L,Λ), ∗) the quantum homology of L endowed with the quantum product.
The main goal of this dissertation is to generalize their construction to a larger class
of spaces. Namely, we consider : either the so called almost monotone lagrangian submanifolds,
i.e. α is C1-close to a monotone lagrangian embedding, or the toric fibers of
toric Fano manifolds. In those cases, we are able to generalize the constructions made by Biran and Cornea. However, in those non necessarily monotone cases, QH(L) will depend on some
choices, but in a way irrelevant for the applications we have in mind.
In the almost monotone case, we are mainly interested in displaceability, uniruling
and ernegy estimates for hamiltonian diffeomorphsims.
Finally, we end by an application, that combine the two approaches, concerning the
dynamics of hamiltonian that displace all non-monotone toric fibers of CPn.
|
8 |
Quelques propriétés des sous-variétés lagrangiennes monotones : Rayon de Gromov et morphisme de SeidelCharette, François 08 1900 (has links)
Cette thèse présente quelques propriétés des sous-variétés lagrangiennes monotones. On résoud d'abord une conjecture de Barraud et Cornea dans le cadre monotone en montrant que le rayon de Gromov relatif à deux lagrangiennes dans la même classe d'isotopie hamiltonienne donne une borne inférieure à la distance de Hofer entre ces deux mêmes lagrangiennes. Le cas non-monotone de cette conjecture reste ouvert encore. On définit toutes les structures nécessaires à l'énoncé et à la preuve de cette conjecture.
Deuxièmement, on définit une nouvelle version d'un morphisme de Seidel relatif à l'aide des cobordismes lagrangiens de Biran et Cornea. On montre que cette version est chaîne-homotope aux différentes autres versions apparaissant dans la littérature. Que toutes ces définitions sont équivalentes fait partie du folklore mais n'apparaît pas dans la littérature.
On conclut par une conjecture qui identifie un triangle exact obtenu par chirurgie lagrangienne et un autre dû à Seidel et faisant intervenir le twist de Dehn symplectique. / We present in this thesis a few properties of monotone Lagrangian submanifolds. We first solve a conjecture of Barraud and Cornea in the monotone setting by showing that the relative Gromov radius of two Hamiltonian-isotopic Lagrangians gives a lower bound on the Hofer distance between them. The general non-monotone case remains open to this day. We define all the structures relevant to state and prove the conjecture.
We then define a new version of a Lagrangian Seidel morphism through the recently introduced Lagrangian cobordisms of Biran and Cornea. We show that this new version is chain-homotopic to various other versions appearing in the litterature. That all these previous versions are the same is folklore but did not appear in the litterature.
We conclude with a conjecture claiming that an exact triangle obtained by Lagrangian surgery is isomorphic to an exact triangle of Seidel involving the symplectic Dehn twist.
|
9 |
Groupes de cobordisme lagrangien immergé et structure des polygones pseudo-holomorphesPerrier, Alexandre 12 1900 (has links)
No description available.
|
10 |
Quelques propriétés des sous-variétés lagrangiennes monotones : Rayon de Gromov et morphisme de SeidelCharette, François 08 1900 (has links)
Cette thèse présente quelques propriétés des sous-variétés lagrangiennes monotones. On résoud d'abord une conjecture de Barraud et Cornea dans le cadre monotone en montrant que le rayon de Gromov relatif à deux lagrangiennes dans la même classe d'isotopie hamiltonienne donne une borne inférieure à la distance de Hofer entre ces deux mêmes lagrangiennes. Le cas non-monotone de cette conjecture reste ouvert encore. On définit toutes les structures nécessaires à l'énoncé et à la preuve de cette conjecture.
Deuxièmement, on définit une nouvelle version d'un morphisme de Seidel relatif à l'aide des cobordismes lagrangiens de Biran et Cornea. On montre que cette version est chaîne-homotope aux différentes autres versions apparaissant dans la littérature. Que toutes ces définitions sont équivalentes fait partie du folklore mais n'apparaît pas dans la littérature.
On conclut par une conjecture qui identifie un triangle exact obtenu par chirurgie lagrangienne et un autre dû à Seidel et faisant intervenir le twist de Dehn symplectique. / We present in this thesis a few properties of monotone Lagrangian submanifolds. We first solve a conjecture of Barraud and Cornea in the monotone setting by showing that the relative Gromov radius of two Hamiltonian-isotopic Lagrangians gives a lower bound on the Hofer distance between them. The general non-monotone case remains open to this day. We define all the structures relevant to state and prove the conjecture.
We then define a new version of a Lagrangian Seidel morphism through the recently introduced Lagrangian cobordisms of Biran and Cornea. We show that this new version is chain-homotopic to various other versions appearing in the litterature. That all these previous versions are the same is folklore but did not appear in the litterature.
We conclude with a conjecture claiming that an exact triangle obtained by Lagrangian surgery is isomorphic to an exact triangle of Seidel involving the symplectic Dehn twist.
|
Page generated in 0.0867 seconds