Spelling suggestions: "subject:"nilálgebras"" "subject:"bialgebras""
1 |
Nilálgebras comutativas de potências associativas / Commutative power-associative nilalgebrasRodiño Montoya, Mary Luz 15 June 2009 (has links)
O objetivo deste trabalho é estudar a estrutura dos módulos sobre uma álgebra trivial de dimensão dois na variedade M das álgebras comutativas de potências associativas. Em particular classificamos os módulos irredutíveis. Estes resultados nos permitem compreender melhor a estrutura das nilálgebras comutativas de dimensão finita e nilíndice 4. Finalmente classificamos, sob isomorfismos, as nilálgebras comutativas de potências associativas de dimensão n e nilíndice n. / The aim of this work is to study the structure of the modules over a trivial algebra of dimension two in the variety M of commutative and power-associative algebras. In particular we classify the irreducible modules. These results enables us to understand better the structure of finite-dimensional power-associative nilalgebras of nilindex 4. Finally, we classify, up to isomorphism, commutative power associative nilalgebras of nilindex n and dimension n.
|
2 |
Nilálgebras comutativas de potências associativas / Commutative power-associative nilalgebrasMary Luz Rodiño Montoya 15 June 2009 (has links)
O objetivo deste trabalho é estudar a estrutura dos módulos sobre uma álgebra trivial de dimensão dois na variedade M das álgebras comutativas de potências associativas. Em particular classificamos os módulos irredutíveis. Estes resultados nos permitem compreender melhor a estrutura das nilálgebras comutativas de dimensão finita e nilíndice 4. Finalmente classificamos, sob isomorfismos, as nilálgebras comutativas de potências associativas de dimensão n e nilíndice n. / The aim of this work is to study the structure of the modules over a trivial algebra of dimension two in the variety M of commutative and power-associative algebras. In particular we classify the irreducible modules. These results enables us to understand better the structure of finite-dimensional power-associative nilalgebras of nilindex 4. Finally, we classify, up to isomorphism, commutative power associative nilalgebras of nilindex n and dimension n.
|
3 |
Nilálgebras comutativas de potências associativas e o problema de Albert / Commutative power-associative nilalgebras and Albert\'s problemVanegas, Elkin Oveimar Quintero 12 September 2016 (has links)
Neste trabalho será provado que as álgebras comutativas de potências associativas de dimensão n e nilíndice n-3, assim como, álgebras de dimensão 9 sobre C, são solúveis, estendendo os resultados conhecidos ao famoso Problema de Albert. Logo depois de estudar o problema de Albert, será dada uma descrição das tabelas de multiplicação para as álgebras comutativas de potências associativas de dimensão n maior do que 12 e nilíndice n-1 sobre um corpo de característica diferente de 2,3 e 5. / We will prove that commutative power-associative nilalgebras both of dimension n and nilindex n-3, or of dimension 9 over C, are solvable. This solve an specific case of famous Albert\'s problem. After that, we will make a description about multiplications of commutative power-associative nilalgebras of dimension n (greater or igual that 12) and nilindex n-1 over a field of characteristic diferent from 2,3 and 5.
|
4 |
Nilálgebras comutativas de potências associativas e o problema de Albert / Commutative power-associative nilalgebras and Albert\'s problemElkin Oveimar Quintero Vanegas 12 September 2016 (has links)
Neste trabalho será provado que as álgebras comutativas de potências associativas de dimensão n e nilíndice n-3, assim como, álgebras de dimensão 9 sobre C, são solúveis, estendendo os resultados conhecidos ao famoso Problema de Albert. Logo depois de estudar o problema de Albert, será dada uma descrição das tabelas de multiplicação para as álgebras comutativas de potências associativas de dimensão n maior do que 12 e nilíndice n-1 sobre um corpo de característica diferente de 2,3 e 5. / We will prove that commutative power-associative nilalgebras both of dimension n and nilindex n-3, or of dimension 9 over C, are solvable. This solve an specific case of famous Albert\'s problem. After that, we will make a description about multiplications of commutative power-associative nilalgebras of dimension n (greater or igual that 12) and nilindex n-1 over a field of characteristic diferent from 2,3 and 5.
|
Page generated in 0.3293 seconds