• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Preparation and Reactivity of Niobium-Containing Hydrotreating Catalysts

Schwartz, Viviane 11 March 2000 (has links)
A series of niobium-containing nitride and carbides were prepared by a temperature-programmed synthesis method. The catalysts synthesized comprised a monometallic niobium oxynitride and a new bimetallic oxycarbide supported system, Nb-Mo-O-C/Al₂O₃ (Mo/Nb = 1.2; 1.6; 2.0). In the case of the niobium oxynitride, the progress of formation was analyzed by interrupting the synthesis at various stages. The effect of the heating rate on product properties was also investigated. The solid intermediates and the final niobium oxynitride were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), elemental analysis (CHNS), and gas adsorption techniques. The solid state transformation occurred directly from Nb₂O₅ to NbN<sub>x</sub>O<sub>y</sub> without any suboxide intermediates. The bimetallic supported oxycarbide materials were also characterized by X-ray diffraction (XRD), gas adsorption techniques, X-ray photoelectron spectroscopy (XPS), and near-edge X-ray absorption fine structure (NEXAFS). It was found that the electronic properties of the oxycarbide were modified by the interaction with the Al₂O₃ support, and that most of the oxygen atoms were associated with the niobium rather than the molybdenum atom. All of the niobium-containing catalysts were tested in a three-phase trickle-bed reactor for the simultaneous hydrodenitrogenation (HDN) of quinoline and hydrodesulfurization (HDS) of dibenzothiophene. The niobium oxynitride presented low HDS activity and moderate HDN activity, whereas the supported bimetallic oxycarbide was found to be highly active for both, HDN and HDS, demonstrating higher activities than the commercial sulfided Ni-Mo/Al₂O₃ when compared on the basis of active sites. In addition to these studies a comprehensive investigation of the HDN reaction mechanism was carried out over bulk unsupported Mo₂C, NbC, NbMo₂-O-C, and compared with the mechanism over a sulfide catalyst, MoS₂/SiO₂. For this purpose, a comparison of the HDN rate of a series of isomeric amines was performed, and the reaction occurred mainly through a β-elimination mechanism for all catalysts. Temperature programmed desorption of ethylamine was used to investigate the acid properties of the catalytic surfaces, and a good agreement between the specific rate of reaction and the number of Brønsted acid-sites was obtained. Infrared spectroscopy showed that the amines interacted with acidic centers to form adsorbed quartenary ammonium species. The deamination reaction over the carbide and sulfide catalysts probably occurs by a concerted push-pull mechanism involving basic sulfur species and Brønsted-acidic centers. In order to obtain more insight into the mechanism a study of the pyridine HDN network was carried out.All of the catalysts showed the same activity trend: the reactivity of n-pentylamine was high, while those of piperidine and pyridine were relatively low. The carbide catalysts showed higher selectivity towards HDN products than the sulfide catalyst at the same conversion levels. The higher selectivity was related to the higher ratio (r = k₂/k₁) between the rate constants of the two consecutive reactions, hydrogenation of pyridine (k₁) and ring opening of piperidine (k₂). The order of activity of the carbides and sulfide differed considerably depending on the substrate. However, for the pyridine reaction network the similarity in product distribution suggested that a similar surface composition, a carbosulfide, was attained during the reaction. / Ph. D.
2

Deposição e caracterização de filmes finos de NbAIN por magnetron sputtering reativo / Deposition and characterization of NbAIN thin films by reactive magnetron sputtering

Carvalho, Renata Gomes 17 February 2016 (has links)
Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / The objective of this work was to study NbAlN thin films and the influence of variation in the concentration of aluminum in the crystal structure, mechanical properties and oxidation resistance of these coatings. The thin films were deposited by reactive magnetron sputtering and characterized by Grazing Incidence X-ray Diffraction (GIXRD), Energy Dispersive Spectroscopy (EDS), Rutherford Backscattering Spectrometry (RBS), nanohardness analysis and oxidation tests at high temperatures. It was first necessary to define the deposition parameters of NbN thin films with δ-NbN phase (fcc). From this, NbAlN thin films were deposited and present at concentration of 10, 20 and 42 at% Al. The NbAlN crystalline phase obtained was the δ-NbN, however it was observed a shift of the peaks in the patterns obtained GIXRD of regions for larger angles for these samples, indicating the formation of a solid solution. The higher oxidation resistance temperature was 700° C for the sample with 42 in at% Al. From the SEM analysis it was possible to observe the surface of the film after oxidation, all films showed defects, however the amount of such defects was lower in samples with higher aluminum concentrations. The average hardness values obtained for thin films NbAlN was 25 GPa. / O objetivo do presente trabalho foi estudar filmes finos de NbAlN e verificar a influência da variação da concentração de alumínio na estrutura cristalina, propriedades mecânicas e resistência à oxidação desses revestimentos. Os filmes finos foram depositados por magnetron sputtering reativo e caracterizados por Difração de Raios X em Ângulo Rasante (GIXRD), Espectroscopia de Energia dispersiva (EDS), Espectroscopia por Retroespalhamento Rutherford (RBS), análises de nanodureza e testes de oxidação a altas temperaturas. Primeiramente foi necessário definir os parâmetros de deposição de filmes finos de NbN com fase δ-NbN (cfc). A partir disso, filmes finos de NbAlN foram depositados e apresentaram concentração em at% de Al de 10, 20 e 42. A fase cristalina obtida para os filmes de NbAlN foi a δ-NbN, entretanto foi observado um deslocamento dos picos obtidos nos padrões de GIXRD para regiões de ângulos maiores para essas amostras, o que indica a formação de uma solução sólida. A maior temperatura de resistência à oxidação foi de 700°C para a amostra com 42 at% de Al. A partir das análises de MEV foi possível observar a superfície dos filmes após a oxidação, todos os filmes apresentaram defeitos, entretanto a quantidade desses defeitos foi menor nas amostras com maiores concentrações de alumínio. Os valores médios de dureza obtido para os filmes finos de NbAlN foi de 25 GPa.
3

Investigations On The Properties Of TiN, NbN Thin Films And Multilayers By Reactive Pulsed Laser Deposition

Krishnan, R 07 1900 (has links) (PDF)
Two technologies, namely Laser Technology and Surface Modification Technology, have made rapid strides in the last few decades. The lasers have evolved from a simple laboratory curiosity to a matured industrial tool and its applications are limited only by imagination. Intense, coherent and monochromatic laser sources with power outputs ranging over several orders of magnitude have found innumerable applications in the realm of materials engineering. Reactive Pulsed Laser Deposition (PLD) is a powerful technique that utilises the power of a nanosecond pulsed laser for materials synthesis. Unlike conventional PLD, which require high density targets that are difficult to synthesize at a reasonable cost, the RPLD circumvents the need for one such ceramic target. This thesis presents a detailed and judicious use of this technique for synthesis of hard ceramic multilayer coatings using elemental metal targets. Transition metal nitrides having rock salt structure are known to exhibit superior properties such as hardness and wear resistance and hence formed the basis for the development of first generation coatings. Further improvements through alloying of these binary compounds with metal or metalloid components lead to the development of second generation coatings. As the demand for functional materials increased, surface modification technology alias surface engineering, grew in leaps and bounds. As the large number of coating requirements for optimal performance could not be fulfilled by a single homogeneous material, third generation coatings, comprising multilayer coatings, were developed. It is this aspect of combining the advantages of RPLD process to synthesize ceramic multilayer coatings, provides the main motivation for the present research work. In this thesis, a systematic study presented for synthesis of nanocrystalline and stoichiometric TiN and NbN thin films using RPLD through ablation of high purity titanium and niobium targets, in the presence of low pressure nitrogen gas. A novel Secondary Ion Mass Spectrometry (SIMS) based analysis was developed to effectively deduce the important process parameters in minimum trials to arrive at desired composition. The validity of this SIMS based method, for optimization of process parameters to get stoichiometric nitride films, was proved beyond any speculation by corroborative Proton Elastic Backscattering Spectrometric (PEBS) analysis. SIMS was also used to characterize the [NbN/TiN] multilayers. The feasibility of growing nanocrystalline multilayers with varying thicknesses has been demonstrated. Nanomechanical properties including hardness and adhesion strength of monolithic TiN and NbN films and multilayers were evaluated. The thesis is organised into six chapters. The first chapter gives a brief account on the history and development of ‘surface engineering’. The second chapter provides a comprehensive description of the experimental facility developed in-house to pursue research on PLD grown ceramic thin films and multilayers. Thin film synthesis procedure for ex-situ SIMS and TEM analyses is described. Brief introduction is also presented on the characterization techniques used in this study to investigate the surface, interface and microstructural aspects of PLD grown films with underlying basic principles. The third and fourth chapter describes the synthesis and characterization of titanium nitride and niobium nitride thin films using RPLD technique, respectively. SIMS was used in depth profiling mode, for optimization of three important process parameters, viz., nitrogen gas pressure, substrate temperature and laser pulse energy, to get stoichiometric nitride films. Further, films were characterized using GIXRD, TEM, XPS and PEBS for their structure and composition. AFM measurements were made to elucidate the surface morphological features. PEBS was effectively used to estimate the nitrogen concentration in a quantitative manner and the results corroborate well with the SIMS measurements. Having succeeded in synthesizing stoichiometric TiN and NbN films, further studies on the nanomechanical properties of monolithic TiN and NbN films and their multilayers were carried out and these results form the contents of the fifth chapter. The findings of the work reported in this thesis are concluded in Chapter 6 and few possible suggestions were presented as future directions. Both the monolithic TiN and NbN coatings showed a deposition pressure dependent hardness variation. The hardness of these monolithic films was found to be around 30 GPa, higher than the hardness values obtained by other conventional techniques. Keeping total thickness of the multilayers constant at 1 μm, [NbN/TiN] multilayers having bilayer periods ranging from 50 nm to 1000 nm, were synthesized. A systematic enhancement in hardness upto ~ 40 GPa was observed for [NbN/TiN]10 with the modulus of the multilayer remaining almost constant. The pileup observed around the indentation edge is indicative of toughening in multilayers. The tribological properties of multilayer films showed a better performance in terms of low coefficient of friction and regeneration of coating surfaces as revealed from the nanotribological studies. Overall, the multilayer coatings exhibited better performance in terms of hardness, toughness and adhesion with the substrate material.

Page generated in 0.0426 seconds