821 |
Calmodulin Binding and Activation of Mammalian Nitric Oxide SynthasesSpratt, Donald Eric 23 April 2008 (has links)
Calmodulin (CaM) is a ubiquitous cytosolic Ca2+-binding protein involved in the binding and regulation of more than three-hundred intracellular target proteins. CaM consists of two globular domains joined by a central linker region. In the archetypical model of CaM binding to a target protein, the Ca2+-replete CaM wraps its two domains around a single α-helical target peptide; however, other conformations of CaM bound to target peptides and proteins have recently been discovered. Due to its ability to bind and affect many different intracellular processes, there is significant interest in a better understanding of the structural and conformational basis of CaM’s ability to bind and recognize target proteins.
The mammalian nitric oxide synthase (NOS) enzymes are bound and activated by CaM. The NOS enzymes catalyze the production of nitric oxide (•NO), a free radical involved in numerous intercellular processes such as neurotransmission, vasodilation, and immune defense. There are three different isoforms of nitric oxide synthase (NOS) found in mammals – neuronal NOS (nNOS), endothelial NOS (eNOS), and inducible NOS (iNOS). All three enzymes are homodimeric with each monomer consisting of an N-terminal oxygenase domain and a multidomain C-terminal reductase domain. A CaM-binding domain separates the oxygenase and reductase domains. There is a unique opportunity to investigate CaM’s control over •NO production by the NOS enzymes since each isoform shows a different mode of activation and control by CaM. At elevated cellular Ca2+ concentrations, CaM is able to bind and activate nNOS and eNOS. In contrast, the iNOS isozyme is transcriptionally regulated and binds to CaM in the absence of Ca2+. The focus of this thesis is to better our present understanding of the conformational and structural basis for CaM’s ability to bind and activate the three mammalian NOS isozymes with particular emphasis on the interactions between CaM and iNOS.
To further investigate the differences in the association of CaM to the Ca2+-dependent and Ca2+-independent NOS isoforms, a variety of CaM mutants including CaM-troponin C chimeras, CaM EF hand pair proteins, and CaM mutants incapable of binding to Ca2+ were employed. The inherent differences in binding and activation observed using these CaM mutants is described. Differences in the binding of the N- and C-terminal domains, as well as the central linker of CaM to peptides corresponding to the CaM-binding domain of each NOS enzyme and holo-NOS enzymes was investigated. The conformation of CaM when bound to NOS peptides and holo-NOS enzymes was also studied using fluorescence (Förster) resonance energy transfer (FRET). A preliminary three-dimensional structural study of Ca2+-replete and Ca2+-deplete CaM in complex with an iNOS CaM-binding domain peptide is also described.
Combining the cumulative results in this thesis, a working model for iNOS’s regulation by CaM is proposed. Future suggested experiments are described to further the characterization of CaM binding to the NOS enzymes and other CaM-target proteins. The studies described in this thesis have expanded and improved the present understanding of the CaM-dependent binding and activation of the NOS isozymes, particularly the interactions between CaM and iNOS.
|
822 |
Cardiovascular effects of environmental tobacco smoke and benzo[a]pyrene exposure in ratsGentner, Nicole Joy 08 April 2010 (has links)
Smoking and environmental tobacco smoke (ETS) exposure are major risk factors for cardiovascular disease (CVD), although the exact components and pathophysiological mechanisms responsible for this association remain unclear. Polycyclic aromatic hydrocarbons (PAHs), including benzo[a]pyrene (BaP), are ubiquitous environmental contaminants that form during organic material combustion and are thus found in cigarette smoke, vehicle exhaust particles, and air pollution. We hypothesize that PAHs are key agents responsible for mediating the cigarette smoke effects in the cardiovascular system, including increased oxidative stress, inflammation, and arterial stiffness.<p>
Arterial stiffness is a powerful, independent predictor of cardiovascular risk and is regulated, in part, by vasoactive mediators derived from the endothelium. The first objective of this project was to determine whether pulse wave dP/dt collected from radiotelemetry-implanted rats is a reliable indicator of changes in arterial stiffness following administration of vasoactive drugs or acute ETS exposure. Anaesthetized rats were administered a single dose of saline (vehicle control), acetylcholine, norepinephrine, and N(G)-nitro-L-arginine methyl ester (L-NAME) via the tail vein, allowing a washout period between injections. Acetylcholine decreased and norepinephrine increased dP/dt compared to saline vehicle. Injection of the nitric oxide (NO) synthase inhibitor L-NAME decreased plasma nitrate/nitrite (NOx), but transiently increased dP/dt. For the ETS experiment, rats were exposed for one hour to sham, low dose ETS, or high dose ETS. Exposure to ETS did not significantly alter dP/dt or plasma endothelin-1 (ET-1) levels, but increased plasma NOx levels at the high ETS exposure and increased plasma nitrotyrosine levels in both ETS groups. In conclusion, acute changes in NO production via acetylcholine or L-NAME alter the arterial pulse wave dP/dt consistently with the predicted changes in arterial stiffness. Although acute ETS appears to biologically inactivate NO, a concomitant increase in NO production at the high ETS exposure may explain why ETS did not acutely alter dP/dt.<p>
The second objective of this project was to compare the effects of subchronic ETS and BaP exposure on circadian blood pressure patterns, arterial stiffness, and possible sources of oxidative stress in radiotelemetry-implanted rats. Pulse wave dP/dt was used as an indicator of arterial stiffness, and was compared to both structural (wall thickness) and functional (NO production and bioactivity, ET-1 levels) features of the arterial wall. In addition, histology of lung, heart, and liver were examined as well as pulmonary and hepatic detoxifying enzyme activity (cytochrome P450 specifically CYP1A1). Daily ETS exposure for 28 days altered the circadian pattern of heart rate and blood pressure in rats, with a loss in the normal dipping pattern of blood pressure during sleep. Subchronic ETS exposure also increased dP/dt in the absence of any structural modifications in the arterial wall. Although NO production and ET-1 levels were not altered by ETS, there was increased biological inactivation of NO via peroxynitrite production (as indicated by increased plasma nitrotyrosine levels). Thus, vascular stiffness and failure of blood pressure to dip precede structural changes in rats exposed to ETS for 28 days. Exposure to ETS also caused increased number of lung neutrophils as well as increased CYP1A1 activity in lung microsomes.<p>
Since ETS-induced increases in arterial stiffness occurred as early as day 7, radiotelemetry-implanted rats were exposed daily to intranasal BaP for 7 days. Similar to ETS, BaP exposure altered circadian blood pressure patterns and reduced blood pressure dipping during sleep. Thus, in support of part of our hypothesis, the PAH component of cigarette smoke may be responsible for the ETS-induced increase in blood pressure and the loss of dipping pattern during sleep. Increased neutrophil recruitment was observed in the lungs of both ETS- and BaP-exposed rats, suggesting that lung inflammatory reactions may be involved in the disruption of circadian blood pressure rhythms. Unlike ETS however, BaP exposure did not significantly alter pulse wave dP/dt, endothelial function, or lung CYP1A1 activity. Thus, contrary to our hypothesis, the reduction in NO bioactivity and increased arterial stiffness caused by ETS cannot be explained by BaP at the dose and length of the exposure in the current study. Production of reactive metabolites in the lung following ETS exposure may be responsible, at least in part, for the increases in oxidative stress in the vasculature, leading to reduced NO bioactivity and increased arterial stiffness. Oxidative stress caused by BaP exposure may have been insufficient to reduce NO bioactivity in the peripheral vasculature. Therefore arterial stiffness was not increased and factors other than NO may be responsible for the increase in blood pressure observed with ETS and BaP exposure.
|
823 |
Cancer Stem Cells in Brain Tumors: Identification of Critical Biological EffectorsEyler, Christine Elissa January 2010 (has links)
<p>Human cancer is a leading cause of morbidity and mortality in the developed world. Contrary to the classical model in which tumors are homogeneously composed of malignant cells, accumulating evidence suggests that subpopulations of highly malignant cells play a dominant role in tumor initiation and growth. These cells have the capacity for prolonged self-renewal and they efficiently generate tumors that phenotypically resemble the parental tumor in transplantation assays. Such characteristics are reminiscent of normal stem cells, and these potently tumorigenic cells have therefore been called cancer stem cells (CSCs). Importantly, studies have shown that CSCs are central mediators of therapeutic resistance, tumor angiogenesis, and metastatic or invasive potential. In the case of malignant glioma, poor patient survival and the paucity of effective therapeutic advances have been attributed to inherent CSC growth potential and treatment resistance, respectively. For this reason, there is great interest in elucidating the molecular features of CSCs, with the ultimate hope of developing CSC-directed therapies.</p><p>Given the overlap between the highly malignant characteristics exhibited by CSCs and those promoted by the PI3K/AKT pathway, we hypothesized that AKT activity within CSCs could represent a reasonable therapeutic target for CSC-directed therapies. Indeed, a pharmacological inhibitor of AKT preferentially targeted glioma CSCs versus non-CSCs and was associated with increased apoptosis and impaired tumorigenesis. These data suggest that interventions targeting AKT could effectively target glioma CSCs. </p><p>Quite distinct from the PI3K/AKT pathway, we hypothesized that the pro-survival and pro-growth features of nitric oxide (NO) might also operate in glioma CSCs. Our experiments found that glioma CSCs produced more NO than non-CSCs, which is attributed to inducible nitric oxide synthase (iNOS) expression and activity within the CSCs. Interference with iNOS activity or expression, as well as selective NO consumption, attenuated CSC growth and tumorigenicity. The mechanism behind iNOS-mediated survival appears to involve, at least in part, suppression of the cell cycle inhibitor CDA1. iNOS inhibition decreased glioma growth in murine xenografts and human expression studies demonstrate an inverse correlation between iNOS expression and patient survival.</p><p>To more fully evaluate the biological effects of NO in CSCs, we designed a novel strategy to consume NO within mammalian cells through heterologous expression of E. coli flavohemoglobin (FlavoHb). This enzyme is a highly specific NO dioxygenase which converts NO to inert nitrate several orders of magnitude faster than iNOS synthesizes NO. Expression of FlavoHb in mammalian cells is therefore a novel and functional tool to interrogate the role of NO in cellular stress and signaling. </p><p>In summary, this doctoral thesis focuses on several molecular characteristics that define malignant CSCs and describes a novel strategy for studying NO, which is one of the CSC-specific molecular effectors.</p> / Dissertation
|
824 |
The role of propofol on nitric oxide production and oxdiative stress in cardivascular and pulmonary system during endotoxmia and ischemia-reperfusion injury: from animal to cellLiu, Yen-Chin 19 February 2010 (has links)
Sepsis, a great challenge to the physician, is characterized with massive oxidative stress of tissue, cytokine inflammation and increases in nitric oxide (NO) production. Meanwhile, free radical induced by oxidative stress also injures cell membrane or DNA. The way to terminate free radical chain reaction is to administer antioxidant. The commonly used anesthetic, propofol, was thought to be with antioxidant capacity.
In the first part of this thesis, we investigated the different role of oxidative injury and NO via systemic injection of LPS in rats. We demonstrated oxidative injury is associated with both early and late stage whereas NO is engaged primarily in late stage cardiovascular depression. Propofol, a rapid onset and fast recovery anesthetic, is attributed to protect anainst cardiovascular depression via attenuating the late stage NO surge in aorta by inhibition of iNOS upregulation. We also examine the influence of propofol on temporal changes in power density of frequency components of systemic arterial pressure (SAP) variability in rat with sepsis and the role of inducible NO synthase (iNOS). We have the conclusions that iNOS-induced NO might be involved in the manifestation of high-frequency and low-frequency components of the SAP spectrum during endotoxemia when low-dose propofol is used and the effect of NO is blunted when high-dose propofol is administered. Due to further investigation was needed to the cellular protective mechanisms of propofol, we delineate the effect of propofol to free radical related enzymel involved in sepsis via both in vivo and vitro studies with rats subjected to LPS (15 mg/kg) and H9C2, L2, NR8383 (derived from rat cardiac myocyte, lung, macrophage, respectively), respectively. Our results demonstrated that propofol may play the major protective role on iNOS, superoxide dismutase and p47 phox oxidative enzymes on lung epithelial cells. Propofol also provided protective effects on cardiac myocyte and macrophage with suppression of iNOS only although free radical production were all significantly suppressed.
Ischemia-reperfusion (IR) injury may also produce a lot of free radical and cytokines to cause tissue damage and is common in clinical. We investigated the effect of propofol on free radical and cytokine production via this different model and compared with another rapid recovery anesthesitc, sevoflurane. Aortic decalmping surgery in porcine and their monocyte, aortic and coronary smooth muscle cells were applied for in vivo and in vitro model, respectively. We also demonstrated that propofol but not sevoflurane suppressed the production of free radical and cytokine in monocyte and smooth muscle cells but not in vivo model.
In sepsis and IR model that produced a lot free radical and cytokines, propofol eliminated the free redical and cytokines via suppressed different kinds of oxidative enzymes in different cells of different organs to express its protective role. However, as an anesthetic, propofol must be used carefully to perform its maximal benefit.
|
825 |
Proteomics Analysis of an Anti-inflammatory Marine-derived CompoundHung, Han-Chun 29 August 2011 (has links)
Many inflammatory diseases are growing increasing common in the aging society of Taiwan. Inflammation cascades can cause diseases such as rheumatoid arthritis, osteoarthritis, chronic asthma, multiple sclerosis, and so on. The clinically used anti-inflammatory drugs have many side effects and are expensive. Therefore, it is imperative that we find alternatives to these drugs. Marine natural compounds offer great hope in the development of drugs for treating inflammatory diseases. In the present study, we found that Chao-10, which is a marine-derived compound isolated from Formosan soft coral, significantly inhibited the expression of the pro-inflammatory protein, inducible nitric oxide synthase (iNOS), in the lipopolysaccharides (LPS)-stimulated RAW 264.7 macrophage cell line. We suggest that Chao-10 may serve as a potential new anti-inflammatory agent. However, the mechanism by which the anti-inflammatory effects of Chao-10 are mediated is yet unclear. Therefore, we performed two-dimensional electrophoresis (2-DE) to investigate the regulatory mechanism for the anti-inflammatory effect of Chao-10. We isolated some proteins that may be involved in the anti-inflammatory mechanism of Chao-10. In addition, we used immunoprecipitation to find that nucleophosmin (NPM) could interact with nuclear factor kappa B (NF-£eB). Therefore, we hypothesize that nucleophosminmay be involved in the regulation of NF-£eB to enhance the down-regulation of iNOS proteins. In summary, the anti-inflammatory effects of Chao-10 are probably mediated through the some other signaling pathway. Importantly, Chao-10 not only offers some new biomarkers of inflammation but also provides an encouraging outlook on therapeutic approaches.
|
826 |
The effects of compounds obtained from Formosa soft coral on carrageenan-induced inflammation in ratsLi, Chi-min 30 August 2011 (has links)
In recent years, studies have increasingly recognized that many natural products with biological activity have been isolated from marine organisms, while the chemical structures are very different from those of land-based organisms. Therefore, the ocean is a natural drug source. Regarding drug screening, anti-inflammatory activity has become a key point, and many studies confirm that inflammation plays an important role in many human diseases. Many different compounds are now in the clinical evaluation stage. However, the inflammation-related diseases being closely linked, there is an urgent need to study the anti-inflammatory effects as well as screen the therapeutic drugs for research and development. In this study, we isolated and purified compounds from Formosan gorgonian (Briareum excavatum) and Formosan soft coral (Lobophytum sarcophytoides) and investigated biological activities. We confirmed that the natural compound Brei from B. excavatum and the compounds Sac-1 and Sac-2 from L. sarcophytoides produced significant inhibition of the proinflammatory proteins inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in the lipopolysaccharide (LPS)-induced murine macrophages (RAW 264.7) cell model. We examined in vivo whether the B. excavatum Brei has anti-inflammatory and antinociceptive effects by using the carrageenan-induced inflammation model. Using the paw-edema assay, we performed several important investigations such as the plantar analgesia test, mechanical hyperalgesia test (allodynia), and weight-bearing analysis of animal behavior to evaluate the degree of pain and inflammation. Our results demonstrate that the natural product Brei can reduce paw-pad swelling, thermal hyperalgesia, threshold latency, and improve the affected limb in the carrageenan-induced inflammatory model. In the histopathology analysis, we showed that Brei significantly inhibited the aggregation and infiltration of inflammation-related blood cells and improved the inflammatory status of the tissues. Therefore, the marine natural compound Brei has anti-inflammatory activity and it can be used as a therapeutic compound for acute inflammation in the near future.
|
827 |
The role of ubiquitin-proteasome system at rostral ventrolateral medulla in an experimental endotoxemia model of brain stem deathWu, Hsin-yi 23 May 2012 (has links)
Brain stem cardiovascular regulatory dysfunction during brain stem death is underpinned by an upregulation of nitric oxide synthase II (NOS II) in rostral ventrolateral medulla (RVLM), the origin of a life-and-death signal detected from blood pressure of comatose patients that disappears before brain stem death ensues. At the same time, the ubiquitin-proteasome system (UPS) is involved in the synthesis and degradation of NOS II. We assessed the hypothesis that the UPS participates in brain stem cardiovascular regulation during brain stem death by engaging in both synthesis and degradation of NOS II in RVLM. In a clinically relevant experimental model of brain stem death using Sprague-Dawley rats, pretreatment by microinjection into the bilateral RVLM of proteasome inhibitors (lactacystin or proteasome inhibitor II) antagonized the hypotension and reduction in the life-and-death signal elicited by intravenous administration of Escherichia coli lipopolysaccharide (LPS). On the other hand, pretreatment with an inhibitor of ubiquitin-recycling or UCH-L1 potentiated the elicited hypotension and blunted the prevalence of the life-and-death signal. Real-time polymerase chain reaction, Western blot, electrophoresis mobility shift assay, chromatin immunoprecipitation and co-immunoprecipitation experiments further showed that the proteasome inhibitors antagonized the augmented nuclear presence of NF-£eB or binding between NF-£eB and nos II promoter and blunted the reduced cytosolic presence of phosphorylated I£eB. The already impeded NOS II protein expression by proteasome inhibitor II was further reduced after gene-knockdown of NF-£eB in RVLM. In animals pretreated with UCH-L1 inhibitor and died before significant increase in nos II mRNA occurred, NOS II protein expression in RVLM was considerably elevated. We conclude that UPS participates in the defunct and maintained brain stem cardiovascular regulation during experimental brain stem death by engaging in both synthesis and degradation of NOS II at RVLM. Our results provide information on new therapeutic initiatives against this fatal eventuality.
|
828 |
Investigation on Nitric Oxide and Soot of Biodiesel and Conventional Diesel using a Medium Duty Diesel EngineSong, Hoseok 2012 May 1900 (has links)
Biodiesel has been suggested as an alternative fuel to the petroleum diesel fuel. It beneficially reduces regulated emission gases, but increases NOx (nitric oxide and nitrogen dioxide) Thus, the increase in NOx is the barrier for potential growth of the biodiesel fuel. In general, NOx formation is dominated by flame temperature. Interestingly, soot can play a role as a heat sink as well as a heat transfer media to high temperature gases. Thus, the cooling effect of soot may change the flame temperature and therefore, NOx emissions.
In this study, emphasis is placed on the relationship between soot and NO (Nitric oxide) formation. For the experimental study, a metallic fuel additive is used since barium is known to be effective to suppress soot formation during combustion. The barium additive is applied to #2D (Number 2 diesel fuel) by volume basis: 0.1, 0.25 and 0.5 %-v, and to the palm olein oil by 0.25 %-v. All the tests are carried out in a four-cylinder medium duty diesel engine, 4045 DI diesel engine, manufactured by John Deere. For the analysis, an analytical model is used to estimate combustion temperature, NO concentration and soot emissivity.
The results show that NO concentration does not have the expected trade-off relation with soot. Rather, NO concentration is found to be more strongly affected by ambient temperature and combustion characteristics than by soot. The results of the analytical model show the reasonable NO estimation and the improvement on temperature calculation. However, the model is not able to explain the detailed changes of soot emissivity by the different fuels since the emissivity correlation is developed empirically for diesel fuel.
|
829 |
Distribution of Nitric Oxide Synthase Isoforms in Neurons and Glial Cells Under Physiological or Pathological Conditions in the Rostral Ventrolateral Medulla of the RatTsai, Po-chuan 15 August 2005 (has links)
The rostral ventrolateral medulla (RVLM) regulates vasomotor activity via sympathoexcitation and sympathoinhibition to maintain blood pressure. Nitric oxide synthesized by nitric oxide synthase (NOS) I and NOS II within RVLM is responsible for sympathoexcitation and sympathoinhibition respectively. In our previously study, under physiological condition RVLM neurons contain both NOS I and NOS II protein, and NOS III protein is expressed mainly on blood vessels.
Under Mevinphos (Mev) intoxication, our previously study demonstrates that the expression of RVLM NOS I and II mRNA or protein are both increased under Mev intoxication phase I, and NOSII mRNA or protein are further increased under Mev intoxication phase II. On the other hand, in rat central nervous system, about 65% of total cells are glial cells, including astrocytes, microglia and oligodendrocytes. However, the expressions of NOS isoforms in RVLM glial cells still need to be determined.
We used double immunofluorescence staining and confocal microscopy to investigate the distributions of NOS isoforms protein in RVLM neurons and glial cells under physiological condition and under pathological condition using Mev intoxication as our model. We further compared the distributions of NOS isoforms in RVLM neurons and glial cells under physiological or pathological conditions.
The confocal images indicate that NOS I protein reactivity co-localized with neurons and microglia in the RVLM. NOS II protein reactivity co-localized with neurons, astrocytes and microglia. NOS III protein reactivity co-localized with blood vessels and microglia. The distributions of NOS isoforms protein reactivity in RVLM neurons and glial cells under Mev intoxication are the same as under physiological condition. Furthermore, the expressions of NOS I protein within neurons or microglia and NOS II in neurons, astrocytes or microglia are progressively increased under Mev intoxication. On the other hand, the expression of NOS III within microglia under Mev intoxication was similar to physiological condition. The population of NOS I-positive neurons or microglia, and NOS II-positive neurons, astrocytes or microglia increased under Mev intoxication. However the population of NOS III-positive microglia decreased under Mev intoxication.
These results indicate that within RVLM, the distributions of NOS I are in neurons and microglia; NOS II are in neurons, astrocytes and microglia; NOS III are in blood vessels and microglia. We suggest that under Mev intoxication, the source of up-regulated NOS I protein includes neurons and microglia; and the up-regulated NOS II protein comes from neurons, astrocytes and microglia.
|
830 |
Role of Nitric Oxide in the Cerebral Vasodilatory Responses to Vasopressin and Oxytocin in DogsSugita, Kenichiro, Shibuya, Masato, Takayasu, Masakazu, Kajita, Yasukazu, Satoh, Shin-ichi, Suzuki, Yoshio, Oyama, Hirofumi 03 1900 (has links)
名古屋大学博士学位論文 学位の種類 : 博士(医学)(課程) 学位授与年月日:平成5年5月14日 雄山博文氏の博士論文として提出された
|
Page generated in 0.0696 seconds