• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Resource aquisition and allocation in lichens

Dahlman, Lena January 2003 (has links)
<p>Lichens are fascinating symbiotic systems, where a fungus and a unicellular alga, most often green (bipartite green algal lichens; 90% of all lichens), or a fi lamentous cyanobacterium (bipartite cyanobacterial lichens; 10% of all lichens) form a new entity (a thallus) appearing as a new and integrated organism: in about 500 lichens the fungus is associated with both a cyanobacterium and an alga (tripartite lichens). In the thallus, the lichen bionts function both as individual organisms, and as a symbiont partner. Hence, in lichens, the participating partners must both be able to receive and acquire resources from the other partner(s) in a controlled way.</p><p>Lichens are particularly successful in harsh terrestrial environments. In part this is related to their poikilohydric nature and subsequent ability to repeatedly become desiccated and hydrated. Metabolic activity, i.e. photosynthesis, respiration, and for cyanobacterial lichens N2-fixation, is limited to periods when the thallus is suffi ciently hydrated. Mineral nutrients are mainly acquired from dry or wet deposition directly on the thallus. Taken together it then appears that lichens are to a large extent passively controlled by their environment, making their control over resource allocation and acquisition particularly challenging.</p><p>The aim of this thesis was to investigate resource acquisition and allocation processes in different lichens, and to see how these respond to changes in resource availability. This was done by following lichen growth in the fi eld during manipulation of water, light, and nutrient supply, and by assessing the responses of both the integrated thallus as well as the individual bionts. As a fi rst step, resource allocation and acquisition was investigated for a broad range of lichens aiming to determine the magnitude of metabolic variation across lichens. Seventy-fi ve lichen species were selected to cover as broad a spectrum as possible regarding taxonomy, morphology, habitat, and nitrogen requirements. The lichens had invested their nitrogen resources so that photosynthetic capacity matched respiratory carbon demand around a similar equilibrium across the contrasting species. Regulation of lichen growth was investigated in another study, using the two tripartite species <i>Nephroma arcticum</i> and <i>Peltigera aphthosa</i>, emphasizing the contribution of both internal and external factors. The empirical growth models for the two lichens were similar, showing that weight gain is to a higher extent dependent on those external factors that regulate their photosynthesis, whilst area gain is more controlled by internal factors, such as their nitrogen metabolism. This might be inferred from another study of the same species, where nitrogen manipulations resulted in an undisturbed weight gain, a similar resource allocation pattern between the bionts, but a distorted area gain. </p><p>Aiming to investigate lichen nitrogen relations even further, lichens’ capacities to assimilate combined nitrogen in the form of ammonium, nitrate and amino acids were assessed using 14 contrasting boreal species. All these had the capacity to assimilate all the three nitrogen forms, with ammonium absorption being more passive, and nitrate uptake being low in bipartite cyanobacterial lichens. Differences in uptake capacities between species were more correlated to photobiont than to morphology or substrate preferences. Finally, to investigate intra-specifi c plasticity in relation to altered nutrient supply, resource investments between photo- and mycobiont were investigated in the two bipartite green algal lichens <i>Hypogymnia physodes </i>and and <i>Platismatia glauca</i> in a low and a high nutrient environ- in a low and a high nutrient environ- ment. In both species, more of the resources had been directed to the photobiont in the high nutrient environment also increasing their overall carbon status. Taken together, my studies indicate that in spite of the apparent passive environmental control on lichen metabolism, these symbiotic organisms are able to both optimize and control their resource acquisition and allocation processes.</p>
2

Resource aquisition and allocation in lichens

Dahlman, Lena January 2003 (has links)
Lichens are fascinating symbiotic systems, where a fungus and a unicellular alga, most often green (bipartite green algal lichens; 90% of all lichens), or a fi lamentous cyanobacterium (bipartite cyanobacterial lichens; 10% of all lichens) form a new entity (a thallus) appearing as a new and integrated organism: in about 500 lichens the fungus is associated with both a cyanobacterium and an alga (tripartite lichens). In the thallus, the lichen bionts function both as individual organisms, and as a symbiont partner. Hence, in lichens, the participating partners must both be able to receive and acquire resources from the other partner(s) in a controlled way. Lichens are particularly successful in harsh terrestrial environments. In part this is related to their poikilohydric nature and subsequent ability to repeatedly become desiccated and hydrated. Metabolic activity, i.e. photosynthesis, respiration, and for cyanobacterial lichens N2-fixation, is limited to periods when the thallus is suffi ciently hydrated. Mineral nutrients are mainly acquired from dry or wet deposition directly on the thallus. Taken together it then appears that lichens are to a large extent passively controlled by their environment, making their control over resource allocation and acquisition particularly challenging. The aim of this thesis was to investigate resource acquisition and allocation processes in different lichens, and to see how these respond to changes in resource availability. This was done by following lichen growth in the fi eld during manipulation of water, light, and nutrient supply, and by assessing the responses of both the integrated thallus as well as the individual bionts. As a fi rst step, resource allocation and acquisition was investigated for a broad range of lichens aiming to determine the magnitude of metabolic variation across lichens. Seventy-fi ve lichen species were selected to cover as broad a spectrum as possible regarding taxonomy, morphology, habitat, and nitrogen requirements. The lichens had invested their nitrogen resources so that photosynthetic capacity matched respiratory carbon demand around a similar equilibrium across the contrasting species. Regulation of lichen growth was investigated in another study, using the two tripartite species Nephroma arcticum and Peltigera aphthosa, emphasizing the contribution of both internal and external factors. The empirical growth models for the two lichens were similar, showing that weight gain is to a higher extent dependent on those external factors that regulate their photosynthesis, whilst area gain is more controlled by internal factors, such as their nitrogen metabolism. This might be inferred from another study of the same species, where nitrogen manipulations resulted in an undisturbed weight gain, a similar resource allocation pattern between the bionts, but a distorted area gain. Aiming to investigate lichen nitrogen relations even further, lichens’ capacities to assimilate combined nitrogen in the form of ammonium, nitrate and amino acids were assessed using 14 contrasting boreal species. All these had the capacity to assimilate all the three nitrogen forms, with ammonium absorption being more passive, and nitrate uptake being low in bipartite cyanobacterial lichens. Differences in uptake capacities between species were more correlated to photobiont than to morphology or substrate preferences. Finally, to investigate intra-specifi c plasticity in relation to altered nutrient supply, resource investments between photo- and mycobiont were investigated in the two bipartite green algal lichens Hypogymnia physodes and and Platismatia glauca in a low and a high nutrient environ- in a low and a high nutrient environ- ment. In both species, more of the resources had been directed to the photobiont in the high nutrient environment also increasing their overall carbon status. Taken together, my studies indicate that in spite of the apparent passive environmental control on lichen metabolism, these symbiotic organisms are able to both optimize and control their resource acquisition and allocation processes.

Page generated in 0.0754 seconds