• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nitroredutases : um estudo das possíveis funções na resposta ao estresse oxidativo

Oliveira, Iuri Marques de January 2013 (has links)
As nitrorredutases compreendem uma família de enzimas dependentes de flavina adenina mononucleotideo (FMN) capazes de metabolizar nitrocompostos usando nicotinamida adenina dinucleotídeo (NAD(P)H) como fonte de elétrons. Essas enzimas desempenham um papel central na metabolização de nitrocompostos recebendo grande atenção devido a sua habilidade em mediar a toxicidade desses compostos, tendo aplicações biotecnológicas e importância clínica. Essas enzimas podem ser encontradas em bactérias e em menor escala em fungos, protozoários e mamíferos. Em relação ao seu papel fisiológico, algumas hipóteses, como a participação na bioluminescência, homeostase metálica, biossíntese de cobalamina e resposta a estresse oxidativo têm sido propostas. Entretanto, não se tem conhecimento exato sobre a sua real função biológica. Neste cenário, este estudo tem como objetivo investigar possíveis funções das nitrorredutases no metabolismo de Escherichia coli e Saccharomyces cerevisiae, com ênfase na possível participação dessas enzimas na resposta ao estresse oxidativo. Para tanto, foi construída a rede de interações proteína-proteína das nitrorredutases NfsA e NfsB de E. coli e identificadas cinco sub-redes representando diferentes processos biológicos. Os resultados permitiram a elaboração de modelos sugerindo que as nitrorredutases de E. coli podem participar do metabolismo de ferro, manutenção do conteúdo de NADPH, metabolismo de compostos aromáticos e síntese de glicogênio. Estas vias podem contribuir nas respostas a estresse oxidativo e a limitação de nutrientes. Na levedura S. cerevisiae, foi determinada a influência das nitrorredutases Frm2p e Hbn1p na resposta a estresse oxidativo. Os resultados mostraram uma menor atividade basal de superóxido dismutase (SOD) e elevada sensibilidade a óxido de 4-nitroquinolina (4-NQO) e N-nitrosodietilamina (NDEA), indução de mutantes citoplasmáticos (petites), produção intracelular de ERO e peroxidação lipídica nas linhagens frm2 hbn1e frm2 hbn1quando expostas a estes agentes geradores de superóxido. Ainda foi observada elevada atividade basal de catalase (CAT), glutationa peroxidase (GPx) e conteúdo de glutationa (GSH) nas linhagens frm2 e frm2 hbn1. Estas linhagens possuem menor produção de espécies reativas de oxigênio (ERO) e peroxidação lipídica quando expostas aos peróxidos H2O2 e t-BOOH. Para elucidar os mecanismos pelos quais as nitrorredutases Frm2p e Hbn1p podem regular as defesas antioxidantes, foram identificadas, por biologia de sistemas, as interações dessas proteínas, tendo cinco sub-redes representando diferentes processos biológicos. Esta análise foi seguida por uma avaliação de índices de centralidade, que identificaram importantes proteínas da rede. Uma triagem dos fenótipos de sensibilidade a oxidantes foi realizada com linhagens proficientes e deficientes nestas proteínas identificadas e foram selecionadas as proteínas envolvidas nas respostas mais evidentes ao estresse oxidativo: as proteínas Ski8 (contribui na degradação do RNAm no sentido 3’-5’) e Cad1 (um ativador transcricional). Esta informação foi usada para a construção de linhagens duplo e triplo mutantes deficientes em Frm2p, Hbn1p, Ski8p ou Cad1p, seguindo a determinação da sensibilidade, acúmulo intracelular de ERO e nível de peroxidação lipídica na exposição a oxidantes e ainda a atividade basal de enzimas antioxidantes. Com base nos resultados obtidos, foi construído um modelo considerando que Cad1p ativa a expressão do gene FRM2 e a interação Frm2p-Ski8p regula as atividades das enzimas antioxidantes pela degradação do RNAm ou pela modulação da degradação dos transcritos do gene OLE1 (Ole1p atua na síntese de ácidos graxos insaturados) modificando a composição de ácidos graxos da membrana plasmática. A interação Hbn1p-Nab2p (Nab2p é necessária para a exportação do RNAm do núcleo para o citoplasma) controla a atividade de SOD pela exportação do RNAm. / The nitroreductase family comprises a group of flavine mononucleotide (FMN)-dependent enzymes able to metabolize nitrosubstituted compounds using the reducing potential of nicotinamide adenine dinucleotide (NAD(P)H). Nitroreductase proteins play a central role in the activation of nitrocompounds and have received attention in recent decades based on their role in mediating nitrosubstituted compound toxicity, by its biotechnological application for bioremediation biocatalysis, and clinical importance in chemotherapeutic tumor treatment, ablation of specific cells and antibiotic resistance. Due to its relevance, different bacterial nitroreductases have been purified, and their biochemical, kinetic parameters and structure have been determined. Nitroreductases can be found within bacterial species and, in a less extend, in eukaryotes, such as fungi, protozoan and mammalian. A feature of the nitroreductase family is our lack of knowledge about its biological function. Therefore, new hypotheses have been proposed to solve the physiological role of nitroreductases, such as bioluminescence, metal homeostasis, vitamin B12 biosynthesis and oxidative stress response. In this context, this study aims to investigate possible functions of nitroreductases in Escherichia coli and Saccharomyces cerevisiae metabolism, with emphasis on possible role of these enzymes in oxidative stress response. Thus, a systems biology study was performed by generating protein-protein interactions (PPI) for NfsA and NfsB nitroreductases of E. coli. The results obtained from these systems biology analyses allow us to draw some models suggesting that E. coli nitroreductases can participate in iron metabolism, NADPH pool maintenance, aromatic compound metabolism, methionine and glycogen synthesis. In the yeast S. cerevisiae, the influence of Frm2p and Hbn1p nitroreductases in oxidative stress response was determined. The results showed a weaker basal activity of superoxide dismutase (SOD) and higher sensitivity for 4-nitroquinoline-oxide (4-NQO) and N-nitrosodiethylamine (NDEA), induction of petites, production of reactive oxygen species (ROS) and lipid peroxidation when exposed the these superoxide-generating agents. The results showed a higher basal activity of catalase (CAT), glutathione peroxidase (GPx) and reduced glutathione (GSH) content in the single and double mutant strains frm2 and frm2 hbn1. These strains were less ROS-producing and lipid peroxidation when exposed to peroxides-generating agents such as H2O2 and t-BOOH. To elucidate the mechanisms how nitroreductases regulate antioxidant defenses, we undertook a systems biology approach to identify Frm2p and Hbn1p interactions. A protein-protein interaction (PPI) network was obtained and biological processes related to RNA metabolism were observed. Thus, network centrality analysis was performed, which allows for selection of important proteins of network. A sensitivity screening of yeast strains proficient and deficient in these proteins to oxidants was performed and selected Ski8p (mediates 3'-5' RNA degradation) and Cad1p (transcriptional activator). This information was used to construct double and triple mutants defective for Frm2p, Hbn1p, Cad1p or Ski8p followed by determination of sensitivity, ROS accumulation, lipid peroxidation following oxidants exposure and basal antioxidant-enzyme activities. The results obtained allow us to draw model suggesting that Cad1p activate FRM2 following Frm2p-Ski8p interaction influences to oxidative stress response by regulates mRNA degradation of antioxidant-enzyme following their activities or OLE1 (Ole1p act in unsaturated fatty acid synthesis) transcripts degradation modifying the plasma membrane fatty acid composition. The Hbn1p-Nab2p (Nab2p act in mRNA export) interaction controls SOD activity by mRNA export.
2

Nitroredutases : um estudo das possíveis funções na resposta ao estresse oxidativo

Oliveira, Iuri Marques de January 2013 (has links)
As nitrorredutases compreendem uma família de enzimas dependentes de flavina adenina mononucleotideo (FMN) capazes de metabolizar nitrocompostos usando nicotinamida adenina dinucleotídeo (NAD(P)H) como fonte de elétrons. Essas enzimas desempenham um papel central na metabolização de nitrocompostos recebendo grande atenção devido a sua habilidade em mediar a toxicidade desses compostos, tendo aplicações biotecnológicas e importância clínica. Essas enzimas podem ser encontradas em bactérias e em menor escala em fungos, protozoários e mamíferos. Em relação ao seu papel fisiológico, algumas hipóteses, como a participação na bioluminescência, homeostase metálica, biossíntese de cobalamina e resposta a estresse oxidativo têm sido propostas. Entretanto, não se tem conhecimento exato sobre a sua real função biológica. Neste cenário, este estudo tem como objetivo investigar possíveis funções das nitrorredutases no metabolismo de Escherichia coli e Saccharomyces cerevisiae, com ênfase na possível participação dessas enzimas na resposta ao estresse oxidativo. Para tanto, foi construída a rede de interações proteína-proteína das nitrorredutases NfsA e NfsB de E. coli e identificadas cinco sub-redes representando diferentes processos biológicos. Os resultados permitiram a elaboração de modelos sugerindo que as nitrorredutases de E. coli podem participar do metabolismo de ferro, manutenção do conteúdo de NADPH, metabolismo de compostos aromáticos e síntese de glicogênio. Estas vias podem contribuir nas respostas a estresse oxidativo e a limitação de nutrientes. Na levedura S. cerevisiae, foi determinada a influência das nitrorredutases Frm2p e Hbn1p na resposta a estresse oxidativo. Os resultados mostraram uma menor atividade basal de superóxido dismutase (SOD) e elevada sensibilidade a óxido de 4-nitroquinolina (4-NQO) e N-nitrosodietilamina (NDEA), indução de mutantes citoplasmáticos (petites), produção intracelular de ERO e peroxidação lipídica nas linhagens frm2 hbn1e frm2 hbn1quando expostas a estes agentes geradores de superóxido. Ainda foi observada elevada atividade basal de catalase (CAT), glutationa peroxidase (GPx) e conteúdo de glutationa (GSH) nas linhagens frm2 e frm2 hbn1. Estas linhagens possuem menor produção de espécies reativas de oxigênio (ERO) e peroxidação lipídica quando expostas aos peróxidos H2O2 e t-BOOH. Para elucidar os mecanismos pelos quais as nitrorredutases Frm2p e Hbn1p podem regular as defesas antioxidantes, foram identificadas, por biologia de sistemas, as interações dessas proteínas, tendo cinco sub-redes representando diferentes processos biológicos. Esta análise foi seguida por uma avaliação de índices de centralidade, que identificaram importantes proteínas da rede. Uma triagem dos fenótipos de sensibilidade a oxidantes foi realizada com linhagens proficientes e deficientes nestas proteínas identificadas e foram selecionadas as proteínas envolvidas nas respostas mais evidentes ao estresse oxidativo: as proteínas Ski8 (contribui na degradação do RNAm no sentido 3’-5’) e Cad1 (um ativador transcricional). Esta informação foi usada para a construção de linhagens duplo e triplo mutantes deficientes em Frm2p, Hbn1p, Ski8p ou Cad1p, seguindo a determinação da sensibilidade, acúmulo intracelular de ERO e nível de peroxidação lipídica na exposição a oxidantes e ainda a atividade basal de enzimas antioxidantes. Com base nos resultados obtidos, foi construído um modelo considerando que Cad1p ativa a expressão do gene FRM2 e a interação Frm2p-Ski8p regula as atividades das enzimas antioxidantes pela degradação do RNAm ou pela modulação da degradação dos transcritos do gene OLE1 (Ole1p atua na síntese de ácidos graxos insaturados) modificando a composição de ácidos graxos da membrana plasmática. A interação Hbn1p-Nab2p (Nab2p é necessária para a exportação do RNAm do núcleo para o citoplasma) controla a atividade de SOD pela exportação do RNAm. / The nitroreductase family comprises a group of flavine mononucleotide (FMN)-dependent enzymes able to metabolize nitrosubstituted compounds using the reducing potential of nicotinamide adenine dinucleotide (NAD(P)H). Nitroreductase proteins play a central role in the activation of nitrocompounds and have received attention in recent decades based on their role in mediating nitrosubstituted compound toxicity, by its biotechnological application for bioremediation biocatalysis, and clinical importance in chemotherapeutic tumor treatment, ablation of specific cells and antibiotic resistance. Due to its relevance, different bacterial nitroreductases have been purified, and their biochemical, kinetic parameters and structure have been determined. Nitroreductases can be found within bacterial species and, in a less extend, in eukaryotes, such as fungi, protozoan and mammalian. A feature of the nitroreductase family is our lack of knowledge about its biological function. Therefore, new hypotheses have been proposed to solve the physiological role of nitroreductases, such as bioluminescence, metal homeostasis, vitamin B12 biosynthesis and oxidative stress response. In this context, this study aims to investigate possible functions of nitroreductases in Escherichia coli and Saccharomyces cerevisiae metabolism, with emphasis on possible role of these enzymes in oxidative stress response. Thus, a systems biology study was performed by generating protein-protein interactions (PPI) for NfsA and NfsB nitroreductases of E. coli. The results obtained from these systems biology analyses allow us to draw some models suggesting that E. coli nitroreductases can participate in iron metabolism, NADPH pool maintenance, aromatic compound metabolism, methionine and glycogen synthesis. In the yeast S. cerevisiae, the influence of Frm2p and Hbn1p nitroreductases in oxidative stress response was determined. The results showed a weaker basal activity of superoxide dismutase (SOD) and higher sensitivity for 4-nitroquinoline-oxide (4-NQO) and N-nitrosodiethylamine (NDEA), induction of petites, production of reactive oxygen species (ROS) and lipid peroxidation when exposed the these superoxide-generating agents. The results showed a higher basal activity of catalase (CAT), glutathione peroxidase (GPx) and reduced glutathione (GSH) content in the single and double mutant strains frm2 and frm2 hbn1. These strains were less ROS-producing and lipid peroxidation when exposed to peroxides-generating agents such as H2O2 and t-BOOH. To elucidate the mechanisms how nitroreductases regulate antioxidant defenses, we undertook a systems biology approach to identify Frm2p and Hbn1p interactions. A protein-protein interaction (PPI) network was obtained and biological processes related to RNA metabolism were observed. Thus, network centrality analysis was performed, which allows for selection of important proteins of network. A sensitivity screening of yeast strains proficient and deficient in these proteins to oxidants was performed and selected Ski8p (mediates 3'-5' RNA degradation) and Cad1p (transcriptional activator). This information was used to construct double and triple mutants defective for Frm2p, Hbn1p, Cad1p or Ski8p followed by determination of sensitivity, ROS accumulation, lipid peroxidation following oxidants exposure and basal antioxidant-enzyme activities. The results obtained allow us to draw model suggesting that Cad1p activate FRM2 following Frm2p-Ski8p interaction influences to oxidative stress response by regulates mRNA degradation of antioxidant-enzyme following their activities or OLE1 (Ole1p act in unsaturated fatty acid synthesis) transcripts degradation modifying the plasma membrane fatty acid composition. The Hbn1p-Nab2p (Nab2p act in mRNA export) interaction controls SOD activity by mRNA export.
3

Nitroredutases : um estudo das possíveis funções na resposta ao estresse oxidativo

Oliveira, Iuri Marques de January 2013 (has links)
As nitrorredutases compreendem uma família de enzimas dependentes de flavina adenina mononucleotideo (FMN) capazes de metabolizar nitrocompostos usando nicotinamida adenina dinucleotídeo (NAD(P)H) como fonte de elétrons. Essas enzimas desempenham um papel central na metabolização de nitrocompostos recebendo grande atenção devido a sua habilidade em mediar a toxicidade desses compostos, tendo aplicações biotecnológicas e importância clínica. Essas enzimas podem ser encontradas em bactérias e em menor escala em fungos, protozoários e mamíferos. Em relação ao seu papel fisiológico, algumas hipóteses, como a participação na bioluminescência, homeostase metálica, biossíntese de cobalamina e resposta a estresse oxidativo têm sido propostas. Entretanto, não se tem conhecimento exato sobre a sua real função biológica. Neste cenário, este estudo tem como objetivo investigar possíveis funções das nitrorredutases no metabolismo de Escherichia coli e Saccharomyces cerevisiae, com ênfase na possível participação dessas enzimas na resposta ao estresse oxidativo. Para tanto, foi construída a rede de interações proteína-proteína das nitrorredutases NfsA e NfsB de E. coli e identificadas cinco sub-redes representando diferentes processos biológicos. Os resultados permitiram a elaboração de modelos sugerindo que as nitrorredutases de E. coli podem participar do metabolismo de ferro, manutenção do conteúdo de NADPH, metabolismo de compostos aromáticos e síntese de glicogênio. Estas vias podem contribuir nas respostas a estresse oxidativo e a limitação de nutrientes. Na levedura S. cerevisiae, foi determinada a influência das nitrorredutases Frm2p e Hbn1p na resposta a estresse oxidativo. Os resultados mostraram uma menor atividade basal de superóxido dismutase (SOD) e elevada sensibilidade a óxido de 4-nitroquinolina (4-NQO) e N-nitrosodietilamina (NDEA), indução de mutantes citoplasmáticos (petites), produção intracelular de ERO e peroxidação lipídica nas linhagens frm2 hbn1e frm2 hbn1quando expostas a estes agentes geradores de superóxido. Ainda foi observada elevada atividade basal de catalase (CAT), glutationa peroxidase (GPx) e conteúdo de glutationa (GSH) nas linhagens frm2 e frm2 hbn1. Estas linhagens possuem menor produção de espécies reativas de oxigênio (ERO) e peroxidação lipídica quando expostas aos peróxidos H2O2 e t-BOOH. Para elucidar os mecanismos pelos quais as nitrorredutases Frm2p e Hbn1p podem regular as defesas antioxidantes, foram identificadas, por biologia de sistemas, as interações dessas proteínas, tendo cinco sub-redes representando diferentes processos biológicos. Esta análise foi seguida por uma avaliação de índices de centralidade, que identificaram importantes proteínas da rede. Uma triagem dos fenótipos de sensibilidade a oxidantes foi realizada com linhagens proficientes e deficientes nestas proteínas identificadas e foram selecionadas as proteínas envolvidas nas respostas mais evidentes ao estresse oxidativo: as proteínas Ski8 (contribui na degradação do RNAm no sentido 3’-5’) e Cad1 (um ativador transcricional). Esta informação foi usada para a construção de linhagens duplo e triplo mutantes deficientes em Frm2p, Hbn1p, Ski8p ou Cad1p, seguindo a determinação da sensibilidade, acúmulo intracelular de ERO e nível de peroxidação lipídica na exposição a oxidantes e ainda a atividade basal de enzimas antioxidantes. Com base nos resultados obtidos, foi construído um modelo considerando que Cad1p ativa a expressão do gene FRM2 e a interação Frm2p-Ski8p regula as atividades das enzimas antioxidantes pela degradação do RNAm ou pela modulação da degradação dos transcritos do gene OLE1 (Ole1p atua na síntese de ácidos graxos insaturados) modificando a composição de ácidos graxos da membrana plasmática. A interação Hbn1p-Nab2p (Nab2p é necessária para a exportação do RNAm do núcleo para o citoplasma) controla a atividade de SOD pela exportação do RNAm. / The nitroreductase family comprises a group of flavine mononucleotide (FMN)-dependent enzymes able to metabolize nitrosubstituted compounds using the reducing potential of nicotinamide adenine dinucleotide (NAD(P)H). Nitroreductase proteins play a central role in the activation of nitrocompounds and have received attention in recent decades based on their role in mediating nitrosubstituted compound toxicity, by its biotechnological application for bioremediation biocatalysis, and clinical importance in chemotherapeutic tumor treatment, ablation of specific cells and antibiotic resistance. Due to its relevance, different bacterial nitroreductases have been purified, and their biochemical, kinetic parameters and structure have been determined. Nitroreductases can be found within bacterial species and, in a less extend, in eukaryotes, such as fungi, protozoan and mammalian. A feature of the nitroreductase family is our lack of knowledge about its biological function. Therefore, new hypotheses have been proposed to solve the physiological role of nitroreductases, such as bioluminescence, metal homeostasis, vitamin B12 biosynthesis and oxidative stress response. In this context, this study aims to investigate possible functions of nitroreductases in Escherichia coli and Saccharomyces cerevisiae metabolism, with emphasis on possible role of these enzymes in oxidative stress response. Thus, a systems biology study was performed by generating protein-protein interactions (PPI) for NfsA and NfsB nitroreductases of E. coli. The results obtained from these systems biology analyses allow us to draw some models suggesting that E. coli nitroreductases can participate in iron metabolism, NADPH pool maintenance, aromatic compound metabolism, methionine and glycogen synthesis. In the yeast S. cerevisiae, the influence of Frm2p and Hbn1p nitroreductases in oxidative stress response was determined. The results showed a weaker basal activity of superoxide dismutase (SOD) and higher sensitivity for 4-nitroquinoline-oxide (4-NQO) and N-nitrosodiethylamine (NDEA), induction of petites, production of reactive oxygen species (ROS) and lipid peroxidation when exposed the these superoxide-generating agents. The results showed a higher basal activity of catalase (CAT), glutathione peroxidase (GPx) and reduced glutathione (GSH) content in the single and double mutant strains frm2 and frm2 hbn1. These strains were less ROS-producing and lipid peroxidation when exposed to peroxides-generating agents such as H2O2 and t-BOOH. To elucidate the mechanisms how nitroreductases regulate antioxidant defenses, we undertook a systems biology approach to identify Frm2p and Hbn1p interactions. A protein-protein interaction (PPI) network was obtained and biological processes related to RNA metabolism were observed. Thus, network centrality analysis was performed, which allows for selection of important proteins of network. A sensitivity screening of yeast strains proficient and deficient in these proteins to oxidants was performed and selected Ski8p (mediates 3'-5' RNA degradation) and Cad1p (transcriptional activator). This information was used to construct double and triple mutants defective for Frm2p, Hbn1p, Cad1p or Ski8p followed by determination of sensitivity, ROS accumulation, lipid peroxidation following oxidants exposure and basal antioxidant-enzyme activities. The results obtained allow us to draw model suggesting that Cad1p activate FRM2 following Frm2p-Ski8p interaction influences to oxidative stress response by regulates mRNA degradation of antioxidant-enzyme following their activities or OLE1 (Ole1p act in unsaturated fatty acid synthesis) transcripts degradation modifying the plasma membrane fatty acid composition. The Hbn1p-Nab2p (Nab2p act in mRNA export) interaction controls SOD activity by mRNA export.
4

Estudo do mecanismo de resistência a compostos derivados da classe das tiossemicarbazonas em tripanosomatídeos, com ênfase na glicoproteína-P e na nitrorredutase do tipo I

Campos, Mônica Caroline Oliveira January 2014 (has links)
Made available in DSpace on 2015-11-11T12:13:57Z (GMT). No. of bitstreams: 2 monica_campos_ioc_dout_2014.pdf: 1838588 bytes, checksum: ec217383fd2574c1a377fc8a97dc5507 (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2015-10-29 / Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Rio de Janeiro, RJ, Brasil / Os tratamentos disponíveis para a doença de Chagas e as leishmanioses não são eficientes e apresentam alta toxicidade. Diversos estudos mostram que há possibilidade de indução de resistência de Trypanosoma cruzi ao Benznidazol (BZ) o que pode interferir na eficácia do tratamento. O mesmo tem sido relatado com relação aos fármacos utilizados para o tratamento das leishmanioses, embora não exista um mecanismo de ação definido para a resistência a drogas nestes protozoários. Neste trabalho foram focalizados dois potenciais mecanismos: 1) atividade da glicoproteína-P (Pgp), uma proteína de membrana que atua como uma bomba de efluxo dependente de energia e associada ao fenótipo de resistência a múltiplas drogas (MDR); 2) a enzima nitrorredutase presente em T. cruzi (TcNTR), reponsável pela redução de nitroderivados, como BZ, para obter o efeito tripanocida. Na busca de novos compostos seletivos contra T. cruzi e Leishmania amazonensis, nosso grupo vem estudando derivados da classe das tiossemicarbazonas. Em estudos prévios foi observado que o derivado 4-N-(2-metoxi-estiril)-tiossemicarbazona (2-MEOTIO) foi o composto mais efetivo sobre diferentes formas de T. cruzi, enquanto 4-N-(4\2019-hidroxi-3\2019-metoxi-estiril)-tiossemicarbazona (3-MEOTIO) se mostrou o mais eficiente contra L. amazonensis O mecanismo de resistência a estes compostos foi avaliado, e nossos resultados mostram a participação da Pgp na resistência a 2-MEOTIO e BZ em T. cruzi, e a 3-MEOTIO em L. amazonensis. Ainda, em T. cruzi a participação da Pgp parece estar associada não somente à membrana plasmática, como também à mitocôndria. Em T. cruzi, a perda da função do gene da TcNTR está relacionada à resistência ao BZ, no entanto, foi possível demonstrar que outros mecanismos de resistência estão atuando em conjunto nestes parasitos, e ainda, que os mecanismos são diferentes entre clones isolados de uma mesma população (B15). Também descrevemos nesta tese, a validação in vitro da expressão da luciferase em diferentes cepas de T. cruzi transfectadas com o gene red-shifted-luciferase, a serem utilizadas em futuros ensaios de imagem por bioluminescência in vivo. Os mecanismos de resistência a drogas em T. cruzi e L. amazonensis apresentados neste trabalho podem contribuir para a identificação de novos alvos nestes tripanosomatídeos, objetivando o desenho racional de novas drogas para o tratamento da doença de Chagas e leishmanioses / The available drugs for the treatment of Chagas disease and leishmaniasis are not efficient and cause toxic side effects. Several studies show the possibil ity of drug resistance induction to Benznidazol (BZ) in T rypanosoma cruzi, which may interfere with the treatment efficacy . The same has been observed regarding compounds used to treat leishmaniasis, although more studies on drug resistance mechanism are n eed ed . In the present study we focused on two potential drug resistance mechanisms: 1) P - glycoprotein (Pgp) activity, a membrane protein which acts as an efflux pump energy - dependent and is associated with the multidrug resistance fenotype (MDR); 2) the en zyme nitroreductase (TcNTR) found in T. cruzi, which is responsible for the reduction of nitroheterocyclic derivatives, such as Bz and Nifurtimox, generating metabolites with trypanocidal activity . In the search for new selective drugs for the treatment of Chagas disease and leishmaniasis, our group has been studying compounds from the class of the thiosemicarbazone s . Previous studies showed that the 4 - N - (2 - methoxy - styryl) - thiosemicarbazone (2 - MEOTIO) was the most efficient compound on different forms of T. cruzi, whereas 4 - N - (4’ - hidroxy - 3’ - methoxy styryl) - thiosemicarbazone ( 3 - MEOTIO ) was the most active on Leishmania amazonensis . Here we evaluated the drug resistance mechanism to both thiosemicarbazone derivatives, as well as, to BZ which was used as r eference drug for T. cruzi . Our results show the participation of P gp in the resistance to both 2 - MEOTIO and BZ in T. cruzi, as well as in the resistance in L. amazonensis to the compound 3 - MEOTIO . Interestingly, in T. cruzi the participation of Pg p is related to its localization not only in the plasma membrane but also in the mithocondri on . In addition, in T. cruzi , the loss of the TcNTR gene function is involved in BZ - resistance , however i t was also shown that other mechanisms of drug resistan ce a re also involved and that that these mechanisms may be different even among clones obtained from a single population (B15). We also described here the in vitro validation of the expression of luciferase in different T. cruzi strains transfectaded with the red - shifted - luciferase gene , which wil l be further used in bioluminescence imaging assays in vivo . The drug resistance mechanisms in T. cruzi and L. amazonensis shown here may be useful in the identification of parasite targets, aiming the rational design of new drugs to treat for Chagas disease and leishmaniasis

Page generated in 0.2025 seconds