281 |
Effect of amyloid precursor protein and tau on dendritic spines and cell survival in an ex vivo model of Alzheimer s diseaseTackenberg, Christian 11 December 2009 (has links)
Alzheimer s disease is characterized by synaptic alterations and neurodegeneration. Histopathological hallmarks represent amyloidplaques composed of amyloid-beta (Abeta) and neurofibrillary tangles containing hyperphosphorylated tau. To determine whether synaptic changes and neurodegeneration share common pathways we established an ex vivo model using organotypic hippocampal slicecultures from amyloid precursor protein transgenic mice combined with virus-mediated expression of EGFP-tagged tau constructs. Confocal high-resolution imaging, algorithm-based evaluation of spines and live imaging was employed to determine spine changes and neurodegeneration. We report that Abeta but not tau induces spine loss and shifts spine shape from mushroom to stubby through a mechanism involving NMDA receptor (NMDAR), calcineurin and GSK-3beta activation. In contrast, Abeta alone does not cause neurodegeneration but induces toxicity by phosphorylation of wt tau in a NMDAR-dependent pathway. We show thatGSK-3beta levels are elevated in APP transgenic cultures and that inhibiting GSK-3beta activity or use of phosphorylation-blocking tau mutations prevent Abeta-induced toxicity of tau. FTDP-17 tau mutants are differentially affected by Abeta. While R406W tau shows increased toxicity in the presence of Abeta, no change is observed with P301L tau. While blocking NMDAR activity abolishes toxicity of both wt and R406W tau, the inhibition of GSK-3beta only protects against toxicity of wt tau but not of R406W tau induced by Abeta. Tau aggregation does not correlate with toxicity. We propose that Abeta-induced spine pathology and tau-dependent neurodegeneration are mediated by divergent pathways downstream of NMDA receptor activation and suggest that Abeta affects wt and R406W tau toxicity by different pathways downstream of NMDAR activity.
|
282 |
PLASTICITY MECHANISMS IN VISUAL CORTEX: ANIMAL MODELS AND HUMAN CORTEX / MECHANISMS OF REINSTATED PLASTICITYBeshara, Simon P January 2016 (has links)
A holy grail in neuroscience is being able to control plasticity to facilitate recovery from insult in the adult brain. Despite success in animal models, few therapies have translated from bench to bedside. This thesis is aimed at addressing 2 major stumbling blocks in translation. The first gap is in our understanding of the mechanisms of plasticity-enhancing therapies, and the second is in our understanding the relevance of those mechanisms for human development.
In chapters 2 and 3, I address the first gap by asking whether fluoxetine, a selective serotonin reuptake inhibitor, which reinstates juvenile-like plasticity in adult animals, reinstates a juvenile-like synaptic environment. We found evidence to suggest that fluoxetine is neuroprotective, as it rescued all of the MD-driven changes, but surprisingly we found no evidence that fluoxetine recreated a juvenile-like synaptic environment, with the exception of Ube3A. Ube3A is necessary for critical period plasticity, indicating that Ube3A may play a crucial in enhancing plasticity in the adult cortex.
In chapter 4, I address whether D-serine, an amino acid that has similar effects to fluoxetine in terms of both plasticity and anti-depression, shares a common neurobiological signature with fluoxetine. I found that D-serine’s effects were strikingly similar to fluoxetine, with respect to markers of the E/I balance, indicating that it may be an effective alternative to fluoxetine.
In chapter 5, I address the second gap by studying the development of 5 glutamatergic proteins in human V1. Some changes occurred early, as would be predicted from animals studies, while other changes were protracted, lasting into the 4th decade. These results will help guide the use of treatments, like fluoxetine, which effect glutamatergic proteins.
iv
Together the findings in this thesis significantly advances our understanding of the mechanisms involved in restating plasticity in the adult cortex, and their relevance to humans. / Dissertation / Doctor of Philosophy (PhD) / Neurons change to rewire, adapt, and recover. This plasticity is greatest early in development, so much research has focused on bringing it back in adults. There has been amazing progress in animal models, but this has not translated to humans. Two reasons for this are that we do not fully understand the mechanisms of these treatments in animals or whether those mechanisms are relevant for humans. My thesis addresses this by studying how 2 treatments, fluoxetine and D-serine, affect proteins that are important for plasticity, and how those proteins develop in the humans.
I found that these treatments are neuroprotective, but do not recreate a younger state. One interesting standout is an increase in Ube3A, which is essential for juvenile plasticity. I also found that much of human development is similar to animals, but the time course for some proteins is uniquely prolonged in humans. These findings have implications for the use of plasticity-enhancing treatments at different ages.
|
283 |
Effects of the NMDA Receptor Antagonist MK-801 on the Timing and Temporal Processing of Short-Intervals in RatsMiller, Jonathan P. 04 November 2005 (has links)
No description available.
|
284 |
Functions of the cerebral cortex and cholinergic systems in synaptic plasticity induced by sensory preconditioningMaalouf, Marwan 04 1900 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal. / This thesis provides evidence to support the hypothesis that synaptic plasticity in the primary somatosensory cortex is a cellular correlate of associative learning, that the process depends upon acetylcholine and that only certain cortical neurons display this plasticity. In a first series of experiments, single-imit recordings were carried out in the barrel cortex of awake, adult rats subjected to whisker pairing, an associative learning paradigm where deflections of the recorded neuron's principle vibrissa were repeatedly paired with those of a non-adjacent one. On average, this form of sensory preconditioning increased the responses of a recorded unit to the stimulation of the non-adjacent vibrissa. In contrast, following explicitly unpaired control experiments, neuronal responsiveness decreased. The effect of pairing was further enhanced by local, microiontophoretic delivery of NMDA and the nitric oxide synthase inhibitor L-NAME and reduced by the NMDA receptor competitive antagonist AP5. These results and the fact that the influence of the pharmacological agents on neuronal excitability were either transient (liinited to the delivery period) or simply absent indicated that the somatosensory cerebral cortex is one site where plasticity emerges following whisker pairing. In subsequent experiments, using a similar conditioning paradigm that relied on evoked potential rather than single-unit recordings, increases in the responses of cortical neurons to the non-adjacent whisker were blocked by atropine sulfate, an antagonist of muscarinic cholinoreceptors. Administration of norn-ial saline or atropine methyl nitrate, a muscarinic antagonist that did not cross the blood-brain barrier, instead of atropine sulfate, did not affect plasticity. Analysis of the behavioral state of the animal showed that the changes observed in the evoked potential could not be attributed to fluctuations m the behavioral state of the animal. By combining the results described in this thesis with data foimd in related literature, the author hypothesizes that whisker pairing induces an acetylcholine-dependent form of plasticity within the somatosensory cortex through Hebbian mechanisms.
|
285 |
Repetitive spreading depression induces nestin protein expression in the cortex of rats and mice. Is this upregulation initiated by N-methyl-D-aspartate receptors?Obrenovitch, Tihomir P., Chazot, P.L., Godukhin, O.V. January 2002 (has links)
No / In the November issue (2001) of Neuroscience Letters, Holmin et al. (Neurosci. Lett. 314 (2001) 151) reported that the synthesis of the intermediate filament protein nestin was upregulated by potassium-induced depolarization in the rat cortex. In this letter, we provide supplementary evidence that repeated cortical spreading depression elicited by potassium induces a delayed upregulation of nestin. However, we argue against the authors' conclusion, Nestin expression was N-methyl-D-aspartate (NMDA)-receptor dependent since dizocilpine (MK-801) treatment abolished the response because spreading depression itself is very sensitive to NMDA-receptor block, and the drug treatment was initiated prior to potassium application to the cortex in Holmin et al.'s study.
|
286 |
Modulation of the Progenitor Cell and Homeostatic Capacities of Müller Glia Cells in Retina : Focus on α2-Adrenergic and Endothelin Receptor Signaling SystemsHarun-Or-Rashid, Mohammad January 2016 (has links)
Müller cells are major glial cells in the retina and have a broad range of functions that are vital for the retinal neurons. During retinal injury gliotic response either leads to Müller cell dedifferentiation and formation of a retinal progenitor or to maintenance of mature Müller cell functions. The overall aim of this thesis was to investigate the intra- and extracellular signaling of Müller cells, to understand how Müller cells communicate during an injury and how their properties can be regulated after injury. Focus has been on the α2-adrenergic receptor (α2-ADR) and endothelin receptor (EDNR)-induced modulation of Müller cell-properties after injury. The results show that α2-ADR stimulation by brimonidine (BMD) triggers Src-kinase mediated ligand-dependent and ligand-independent transactivation of epidermal growth factor receptor (EGFR) in both chicken and human Müller cells. The effects of this transactivation in injured retina attenuate injury-induced activation and dedifferentiation of Müller cells by attenuating injury-induced ERK signaling. The attenuation was concomitant with a synergistic up-regulation of negative ERK- and RTK-feedback regulators during injury. The data suggest that adrenergic stress-signals modulate glial responses during retinal injury and that α2-ADR pharmacology can be used to modulate glial injury-response. We studied the effects of this attenuation of Müller cell dedifferentiation on injured retina from the perspective of neuroprotection. We analyzed retinal ganglion cell (RGC) survival after α2-ADR stimulation of excitotoxically injured chicken retina and our results show that α2-ADR stimulation protects RGCs against the excitotoxic injury. We propose that α2-ADR-induced protection of RGCs in injured retina is due to enhancing the attenuation of the glial injury response and to sustaining mature glial functions. Moreover, we studied endothelin-induced intracellular signaling in Müller cells and our results show that stimulation of EDNRB transactivates EGFR in Müller cells in a similar way as seen after α2-ADR stimulation. These results outline a mechanism of how injury-induced endothelins may modulate the gliotic responses of Müller cells. The results obtained in this thesis are pivotal and provide new insights into glial functions, thereby uncovering possibilities to target Müller cells by designing neuroprotective treatments of retinal degenerative diseases or acute retinal injury.
|
287 |
Examination of Age Differences in Incentive Motivation and Impulsivity as Possible Contributing Factors to a Susceptibility to the Effects of Drugs of Abuse during AdolescenceBurton, Christie Lynn 12 December 2013 (has links)
Rationale. Adolescence may be a period of susceptibility to the effects of drugs of abuse. This vulnerability may result from a convergence of psychological processes that contribute to drug addiction including impulsive action and incentive motivation during adolescence. Objectives. I examined age differences in incentive motivation, as measured by responding for a conditioned reinforcer (CR) previously paired with natural or drug rewards, and age and sex differences in impulsive action, as measured by responding on a differential reinforcement of low rates of responding (DRL) schedule or premature responding on the 2-Choice Serial Reaction Time Test (2-CSRTT), in Sprague-Dawley rats. The effects of drugs that affect these behaviours in adulthood and that act on neurochemical systems still developing during adolescence were also examined. Methods. In a first set of experiments (Chapter 3), I compared male adolescents and adults on responding for a CR previously paired with sucrose and the effect of amphetamine on this behaviour. In a second set of experiments (Chapter 4), I examined age differences in responding for a CR previously paired with passive or self-administered intravenous (IV) nicotine infusions. Subsequently, I investigated age and sex differences in responding on a DRL schedule in response to amphetamine (Chapter 5) and 2-CSRTT performance in response to amphetamine, nicotine and Ro 63-1908 (a glutamate N-Methyl-D-aspartic acid [NMDA] receptor subunit antagonist; Chapter 6). Results. Compared to adults, adolescents responded more for a CR previously paired with sucrose or passive, but not self-administered, IV nicotine infusions. Amphetamine only enhanced responding for a CR previously paired with sucrose. Adolescents responded more than adults on a DRL schedule, while adolescents made the most premature responses in the 2-CSRTT. No consistent sex differences were observed during the acquisition of either behaviour. Amphetamine increased premature responding most in adolescent males and adult females in the 2-CSRTT but not in responding on the DRL schedule. No consistent age or sex differences were observed for Ro 63-1908 or nicotine. Conclusions. Adolescents show enhanced impulsivity and incentive motivation than adults depending on the behavioural measure. Dopamine may contribute to age and sex differences in these behaviours.
|
288 |
Glutamatrezeptoren und Ca2+-Homöostase in Hirnstamm-Motoneuronen der Maus / Glutamate receptors and Ca2+-homeostasis in brainstem-motoneurones from mouseVanselow, Bodo Karsten 01 November 2000 (has links)
No description available.
|
289 |
The effect of manipulating the expression of the NR2B subunit of the NMDA receptor on learning and memoryHoon, A. C. January 2011 (has links)
Overexpression of the NR2B subunit of the NMDA receptor in the forebrain has been shown to improve learning and memory in mice (Tang et al 1999), which provides exciting implications for the enhancement of human cognition. However, it was first essential to establish replicability, and since the Tang et al (1999) study used only male mice we wished to investigate possible sex differences. On the hidden platform watermaze, we found a trend for male NR2BOE mice to learn the task more quickly than male wildtype mice (as observed by Tang et al. 1999), but the opposite trend in female mice; female NR2BOE mice were slower to reach the hidden platform than female wildtype mice. This pattern of results was also observed on the spatial reference Y memory task and open field task (for anxiety), although not on the spatial working memory T maze task (despite a sex difference). However, wildtype and NR2BOE mice performed at similar levels on the novel object recognition task, the spatial novelty preference task, visible platform watermaze and visual discrimination task. A battery of tests considering some species typical behaviours of mice demonstrated that wildtype and NR2BOE mice were comparable on tests of motor ability, strength, co-ordination, anxiety, burrowing and nesting. This suggests that our behavioural results are not due to a general impairment or enhancement of species typical behaviours. We considered the possibility that the difference between the results of Tang et al (1999) and those we observed may be caused by age differences; hence we attempted to replicate our results on the hidden platform watermaze, spatial reference Y maze and open field test in age matched mice. However, the second cohort of NR2BOE mice performed at similar levels to wildtype mice, and at significantly improved levels compared to the mice of the first cohort. We also considered the effects of knocking out the NR2B subunit on learning and memory, and NR1 subunit deletion within the hippocampus. On the spatial working memory T maze, these mouse strains performed similarly to their respective wildtype strains. Similarly, on a two beacon watermaze (with one indicating the platform position), mice lacking the NR2B subunit were able to locate the platform in a similar length of time. To ensure that the null results we had observed in the second cohort were not due to loss of the NR2B protein overexpression in the forebrain, we performed polymerase chain reactions (PCR), quantitative real-time PCR, and Western blots. We ascertained that the transgene was indeed present and that NR2B mRNA and protein levels were elevated in the hippocampi of the NR2BOE mice. In conclusion, it is unclear why the behaviours we observed in the NR2BOE mice are different to those published in the literature. It is possible that they may be due to differences in environmental enrichment, but the cause of the genotype by sex differences observed in the mice of cohort 1 is unclear. Nonetheless, we have advanced our knowledge of the effects of modifications in the levels of the NR2B subunit of the NMDA receptor on learning and behaviour.
|
290 |
Možnosti ovlivnění vývoje motoriky laboratorního potkana opakovaným podáváním specifického antagonisty NMDA receptoru / Possible influencing the motor performance of developing rats by repeated administration of the NMDA receptor antagonist specific for NR2 subunitKozlová, Lucie January 2016 (has links)
Nonspecific NMDA receptor antagonists induce hyperlocomotion in rats. The aim of this work is to determine whether the NMDA receptor antagonist specific for NR2 subunit exhibit similar negative effect as nonspecific antagonists. This subunit is predominant in the brain in the early postnatal period. The introduction summarizes the data on NMDA receptors and the development of rat. The experimental part deals with the action of a specific NMDA receptor antagonist Ro 25-6981 on motor performance of developing rats. Substance was repeatedly administered to rats at postnatal days 7 to 11. Spontaneous locomotion and motor performance of the animals were repeatedly tested up to adulthood by battery of tests appropriate for individual ages. Our research demonstrated that this substance does not have significant effect on motor system of laboratory rat and that it might be further tested as a possible age-bound antiepileptic drug.
|
Page generated in 0.0893 seconds