• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Segmentace obrazových dat pomocí grafových neuronových sítí / Image segmentation using graph neural networks

Boszorád, Matej January 2020 (has links)
This diploma thesis describes and implements the design of a graph neural network usedfor 2D segmentation of neural structure. The first chapter of the thesis briefly introduces the problem of segmentation. In this chapter, segmentation techniques are divided according to the principles of the methods they use. Each type of technique contains the essence of this category as well as a description of one representative. The second chapter of the diploma thesis explains graph neural networks (GNN for short). Here, the thesis divides graph neural networks in general and describes recurrent graph neural networks(RGNN for short) and graph autoencoders, that can be used for image segmentation, in more detail. The specific image segmentation solution is based on the message passing method in RGNN, which can replace convolution masks in convolutional neural networks.RGNN also provides a simpler multilayer perceptron topology. The second type of graph neural networks characterised in the thesis are graph autoencoders, which use various methods for better encoding of graph vertices into Euclidean space. The last part ofthe diploma thesis deals with the analysis of the problem, the proposal of its specific solution and the evaluation of results. The purpose of the practical part of the work was the implementation of GNN for image data segmentation. The advantage of using neural networks is the ability to solve different types of segmentation by changing training data. RGNN with messaging passing and node2vec were used as implementation GNNf or segmentation problem. RGNN training was performed on graphics cards provided bythe school and Google Colaboratory. Learning RGNN using node2vec was very memory intensive and therefore it was necessary to train on a processor with an operating memory larger than 12GB. As part of the RGNN optimization, learning was tested using various loss functions, changing topology and learning parameters. A tree structure method was developed to use node2vec to improve segmentation, but the results did not confirman improvement for a small number of iterations. The best outcomes of the practical implementation were evaluated by comparing the tested data with the convolutional neural network U-Net. It is possible to state comparable results to the U-Net network, but further testing is needed to compare these neural networks. The result of the thesisis the use of RGNN as a modern solution to the problem of image segmentation and providing a foundation for further research.
2

Combining Node Embeddings From Multiple Contexts Using Multi Dimensional Scaling

Yandrapally, Aruna Harini 04 October 2021 (has links)
No description available.
3

Exploring Graph Neural Networks for Clustering and Classification

Tahabi, Fattah Muhammad 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Graph Neural Networks (GNNs) have become excessively popular and prominent deep learning techniques to analyze structural graph data for their ability to solve complex real-world problems. Because graphs provide an efficient approach to contriving abstract hypothetical concepts, modern research overcomes the limitations of classical graph theory, requiring prior knowledge of the graph structure before employing traditional algorithms. GNNs, an impressive framework for representation learning of graphs, have already produced many state-of-the-art techniques to solve node classification, link prediction, and graph classification tasks. GNNs can learn meaningful representations of graphs incorporating topological structure, node attributes, and neighborhood aggregation to solve supervised, semi-supervised, and unsupervised graph-based problems. In this study, the usefulness of GNNs has been analyzed primarily from two aspects - clustering and classification. We focus on these two techniques, as they are the most popular strategies in data mining to discern collected data and employ predictive analysis.
4

EXPLORING GRAPH NEURAL NETWORKS FOR CLUSTERING AND CLASSIFICATION

Fattah Muhammad Tahabi (14160375) 03 February 2023 (has links)
<p><strong>Graph Neural Networks</strong> (GNNs) have become excessively popular and prominent deep learning techniques to analyze structural graph data for their ability to solve complex real-world problems. Because graphs provide an efficient approach to contriving abstract hypothetical concepts, modern research overcomes the limitations of classical graph theory, requiring prior knowledge of the graph structure before employing traditional algorithms. GNNs, an impressive framework for representation learning of graphs, have already produced many state-of-the-art techniques to solve node classification, link prediction, and graph classification tasks. GNNs can learn meaningful representations of graphs incorporating topological structure, node attributes, and neighborhood aggregation to solve supervised, semi-supervised, and unsupervised graph-based problems. In this study, the usefulness of GNNs has been analyzed primarily from two aspects - <strong>clustering and classification</strong>. We focus on these two techniques, as they are the most popular strategies in data mining to discern collected data and employ predictive analysis.</p>

Page generated in 0.028 seconds