• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 186
  • 40
  • 34
  • 10
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 387
  • 387
  • 82
  • 77
  • 65
  • 54
  • 43
  • 41
  • 37
  • 31
  • 30
  • 27
  • 26
  • 26
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

Active Control of Vehicle Powertrain and Road Noise

Duan, Jie 23 September 2011 (has links)
No description available.
262

Active Control of Vehicle Powertrain Noise using Adaptive Notch Filter with Inverse Model LMS Algorithm

Xu, Ji January 2015 (has links)
No description available.
263

Suppression of Turbofan and Turbojet Engine Generated Noise

Master, Harry David 01 January 1972 (has links) (PDF)
Every advance in the transformation of heat energy into mechanical energy has involved a noise problem, and in general it increases with the power production. The jet airplane is a good example: the large-scale turbulence of the exhaust gases in the jet forms an unusually intense source of sound the control of which is quite difficult. The additionally generated fan noises add characteristic fan tones which are particularly noticeable on landing approaches. the human ear is the vulnerable receiver of these noises, and the problem becomes one of deciding how much jet engine noise reduction is required for the comfort or safety of the receiver, and then to devise ways to achieve it.
264

Decentralized control of sound radiation from periodically stiffened panels

Schiller, Noah Harrison 04 January 2008 (has links)
Active structural acoustic control has previously been used to reduce low-frequency sound radiation from relatively simple laboratory structures. However, significant implementation issues have to be addressed before active control can be used on large, complex structures such as an aircraft fuselage. The purpose of this project is to extend decentralized structural control systems from individual bays to more realistic airframe structures. In addition, to make this investigation more applicable to industry, potential control strategies are evaluated using a realistic aft-cabin disturbance identified from flight test data. This work focuses on decentralized control, which implies that each control unit is designed and implemented independently. While decentralized control systems are relatively scalable, performance can be limited due to the destabilizing interaction between neighboring controllers. An in-depth study of this problem demonstrates that the modeling error introduced by neighboring controllers can be expressed as the product of the complementary sensitivity function of the neighboring control unit multiplied by a term that quantifies the diagonal dominance of the plant. This understanding can be used to improve existing control strategies. For instance, decentralized performance can often be improved by penalizing control effort at the zeros of the local control model. This stabilizes each control unit and reduces the modeling error induced on neighboring controllers. Additional analyses show that the performance of decentralized model-based control systems can be improved by augmenting the structural damping using robust, low-authority control strategies such as direct velocity feedback and positive position feedback. Increasing the structural damping can supplement the performance of the model-based control strategy and reduce the destabilizing interaction between neighboring control units. Instead of using low-authority controllers to stabilize the decentralized control system, another option is to modify the model-based design. Specifically, an iterative approach is developed and validated using real-time control experiments performed on a structural-acoustic system with poles close to the stability boundary, non-minimum phase zeros, and unmodeled dynamics. Experiments demonstrate that the iterative control strategy, which combines frequency-shaped linear quadratic Gaussian (LQG) control with loop transfer recovery (LTR), is capable of achieving 12dB peak reductions and a 3.6dB integrated reduction in radiated sound power from a rib-stiffened aluminum panel. / Ph. D.
265

LORE Approach for Phased Array Measurements and Noise Control of Landing Gears

Ravetta, Patricio A. 29 December 2005 (has links)
A novel concept in noise control devices for landing gears is presented. These devices consist of elastic membranes creating a fairing around the major noise sources. The purpose of these devices is to reduce wake interactions and to hide components from the flow, thus, reducing the noise emission. The design of these fairings was focused on the major noise sources identified in a 777 main landing gear. To find the major noise sources, an extensive noise source identification process was performed using phased arrays. To this end, phased array technologies were developed and a 26%-scale 777 main landing gear model was tested at the Virginia Tech Stability Wind Tunnel. Since phased array technologies present some issues leading to misinterpretation of results and inaccuracy in determining actual levels, a new approach to the deconvolution of acoustic sources has been developed. The goal of this post-processing is to "simplify" the beamforming output by suppressing the sidelobes and reducing the sources mainlobe to a small number of points that accurately identify the noise sources position and their actual levels. To this end, the beamforming output is modeled as a superposition of "complex" point spread functions and a nonlinear system of equations is posted. Such system is solved using a new 2-step procedure. In the first step an approximated linear problem is solved, while in the second step an optimization is performed over the nonzero values obtained in the previous step. The solution to this system of equations renders the sources position and amplitude. The technique is called: noise source Localization and Optimization of Array Results (LORE). Numerical simulations as well as sample experimental results are shown for the proposed post-processing. / Ph. D.
266

Attenuation of Turbulent Boundary Layer Induced Interior Noise Using Integrated Smart Foam Elements

D'Angelo, John Patrick 22 September 2004 (has links)
Research presented herein involved the use of a smart skin treatment used for the attenuation of turbulent boundary layer induced interior noise. The treatment consisted of several Smart Foam actuators each having a reference and error sensor along with a feed forward, filtered-x controller. Studies were performed to determine if the use of multiple instances of single input, single output (SISO) control systems could be implemented with success given the difficulty of actively suppressing turbulent boundary layer induced interior noise. Further, this research will lead to the development of an integrated Smart Foam element consisting of a Smart Foam actuator, reference sensor, error sensor and SISO controller in one complete, stand--alone unit. Several topics were studied during this effort: reference sensing, error sensing, actuator design, controller causality, correlation of turbulent flow and resulting plate vibration, and coherence between plate vibration and the interior noise field. Each study was performed with the goal of improving the performance of active attenuation of turbulent boundary layer induced interior noise. Depending on the configuration of the control system, control was performed using either experiments or simulations based on experimental data. Within the desired control band of 400--800~Hz, attenuation of up to -3.1~dB$_A$ was achieved at the error sensors and up to -1.4~dB$_A$ within the observer plane relative to the uncontrolled case. However, over a band of greater coherence from 480--750~Hz, attenuation of up to -4.8~dB$_A$ was achieved at the error sensors and up to -2.6~dB$_A$ within the observer plane. Further, peak attenuation of up to -12~dB$_A$ was achieved within the observer plane. Studies were also conducted to increase the low frequency performance of the Smart Foam treatment. These experiments used tuning masses placed on the tops of the integrated Smart Foam elements to tune them to the fundamental mode of the vibrating plate. This treatment was used to reactively attenuate plate vibration such that the radiated acoustic field would be minimized. These experiments resulted in -6~dB$_A$ global attenuation at the plate fundamental resonance. Further, it was shown that the reactive treatment did not inhibit active control. / Ph. D.
267

On the use of modern control theory for active structural acoustic control

Saunders, William R. 28 July 2008 (has links)
A modern control theory formulation of Active Structural Acoustic Control (ASAC) of simple structures radiating acoustic energy into light or heavy fluid mediums is discussed in this dissertation. ASAC of a baffled, simply-supported plate subject to mechanical disturbances is investigated. For the case of light fluid loading, a finite element modelling approach is used to extend previous ASAC design methods. Vibration and acoustic controllers are designed for the plate. Comparison of the controller performance shows distinct advantages of the ASAC method for minimizing radiated acoustic power. A novel approach to the modelling of the heavy fluid-loaded plate is developed here. Augmenting structural and acoustic dynamics using state vector formalism allows the design of both vibration and ASAC controllers for the fluid-loaded plate. This modern control approach to active structural acoustic control is unique in its ability to suppress both persistent and transient disturbances on a plate in a heavy fluid. Numerical simulations of the open-loop and closed-loop plate response are provided to support the theoretical developments. / Ph. D.
268

A regression-based approach for simulating feedfoward active noise control, with application to fluid-structure interaction problems

Ruckman, Christopher E. 06 June 2008 (has links)
This dissertation presents a set of general numerical tools for simulating feedforward active noise control in the frequency domain. Feedforward control is numerically similar to linear least squares regression, and can take advantage of various numerical techniques developed in the statistics literature for use with regression. Therefore, an important theme of this work is to look at the control problem from a statistical point of view, and explore the analogies between feedforward control and basic statistical principles of regression. Motivating the numerical approach is the need to simulate active noise control for systems whose dynamics must be modeled numerically because analytical solutions do not exist, e.g., fluid-structure interaction problems. Plant dynamics for examples in the present work are modeled using a finite-element / boundary-element computer program, and the associated numerical methods are general enough for us with many types of problems. The derivation is presented in the context of active structural-acoustic control (ASAC), in which sound radiating from a vibrating structure is controlled by applying time-harmonic vibrational inputs directly on the structure. First, a feedforward control simulation is developed for a submerged spherical shell using both analytical and numerical techniques; the numerical formulation is found by discretizing the integrations used in the analytical approach. ASAC is shown to be effective for controlling radiation from the spherical shell. For a point-force disturbance at low frequencies, a single control input can reduce the radiated power by up to 20 dB (ignoring the possibility of measurement noise). A more general numerical methodology is then developed based on weighted least-squares regression in the complex domain. It is shown that basic regression diagnostics, which are used in the statistics literature to describe the quality and reliability of a regression, can be used to model the effects of error sensor measurement noise to produce a more realistic simulation. Numerical results are presented for a finite-length, fluid-loaded cylindrical shell with clamped, rigid end closures. It is shown that when the controller reduces the radiated power by less than 2 dB, the control simulation is usually invalid for statistical reasons. Also developed are confidence intervals for the individual control input magnitudes, and prediction intervals which help evaluate the sensitivity to measurement noise for the regression as a whole. Collinearity, a type of numerical ill-conditioning that can corrupt regression results, is demonstrated to occur in an example feedforward control simulation. The effects of collinearity are discussed, and a basic diagnostic is developed to detect and analyze collinearity. Subset selection, a numerical procedure for improving regressions, is shown to correspond to optimizing actuator locations for best control system performance. Exhaustive-search subset selection is used to optimize actuator locations for a sample structure. Finally, a convenient method is given for investigating alternate controller formulations, and examples of several alternate controllers are given including a wavenumber-domain controller. Numerical results for a cylindrical shell give insight to the mechanisms used by the control system, and a new visualization technique is used to relate farfield pressure distributions to surface velocity distributions using wavenumber analysis. / Ph. D.
269

Novel Lightweight Noise and Vibration Control Treatments for Marine Structures

Harne, Ryan 03 September 2009 (has links)
This thesis presents the development and testing of distributed vibration absorber designs with specific application to heavy plates for the reduction of vibration and sound radiation. Two particular designs, already under investigation for use on thin panels or composite materials, were adapted to passively reduce broadband vibration and noise from large and heavy plates. These absorbers are referred to as Distributed Vibration Absorbers [DVAs] and Heterogeneous [HG] Blankets. Numerical models were developed, based on the theory of sound propagation through layered media and the vibration of plates, to simulate the performance of such absorbers for a variety of applications and media characteristics. The new absorber designs were then tested on a large, marine-type plate (4 feet by 2 feet by 1/4 inch) and showed both broadband noise and vibration control from 60 Hz to 5 kHz. DVAs could reduce the vibrating plate resonance magnitudes on the order of 15 dB at their tuning frequencies while providing overall vibration reduction of 5 dB or greater at higher frequencies. HG blankets were also capable of reducing plate resonance vibration up to 15 dB at their tuning frequencies and produced overall vibration reduction of 5 dB at higher frequencies. These absorbers are entirely passive, i.e. requiring no controller or prior modal testing of the structure, were placed randomly during testing, and are designed to contribute less than 10% additional mass to the structure, making them a robust vibration and noise control solution. / Master of Science
270

Reduction of Lunchroom Noise and Other Behaviors Using Feedback and Group Contingent Reinforcement

LaRowe, Lottie Nell 01 April 1978 (has links) (PDF)
Reduction of noise levels in an elementary school lunchroom was examined as a function of feedback and feedback plus reinforcement using group contingency procedures. Feedback consisted of signals from a traffic light with green indicating acceptable levels, yellow indicating slightly higher levels and red indicating unacceptable levels. Other behaviors, running, hitting, pushing and kicking, were measured incidentally. Results indicate that feedback plus reinforcement was effective in reducing noise levels. Feedback alone was also effective, but to a lesser degree. No response - response relationship was found to exist between noise level and the other behaviors.

Page generated in 0.0627 seconds