• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 46
  • 4
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 60
  • 60
  • 49
  • 48
  • 48
  • 48
  • 10
  • 10
  • 10
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The alternative NF-kB pathway in mature B cell development

De Silva, Nilushi January 2015 (has links)
The nuclear factor-kB (NF-kB) signaling cascade is comprised of two branches, the canonical and alternative NF-kB pathways. Signaling through the alternative NF-kB pathway culminates in the activation of the downstream transcription factor subunits, RELB and NF-kB2. The biological roles of RELB and NF-kB2 within the B cell lineage have been obscured in constitutional knockout mice by the diverse functions of these subunits in non-B cell types. To overcome these limitations, conditional alleles were generated to investigate the roles of RELB and NF-kB2 in B cell development. These alleles allowed the identification of complex functional requirements for RELB and/or NF-kB2 in naïve B cells, germinal center (GC) B cells and plasma cells (PCs). These functional requirements may have implications for B cell malignancies that display mutations that constitutively activate the alternative NF-kB pathway. A large body of work has demonstrated that B cell activating factor (BAFF) signaling is critical for the maintenance of mature B cells. However, the contribution of the alternative NF-kB subunits that are activated downstream of BAFF remained unclear, especially in regards to their specific target genes. We have identified critical, B cell-intrinsic roles for RELB and NF-kB2 in the maintenance of mature B cells. In response to BAFF, these subunits were found to control the expression of anti-apoptotic genes, genes that ensure correct positioning within the B cell niche, and genes involved in promoting B–T cell interactions that allow effective antigen-mediated activation. During the GC B cell reaction, light zone (LZ) B cells undergo affinity-based selection mediated by T follicular helper (Tfh) cells. A subset of LZ B cells show activation of the NF-kB signaling cascade, suggesting a critical role for NF-kB in the selection of high-affinity GC B cells. We here report that GC B cell development occurred normally in mice with conditional deletion of either relb (RELB) or nfkb2 (NF-kB2) in GC B cells. In contrast, the simultaneous ablation of both subunits caused rapid involution of established GCs, similar to what has been observed for ablation of the canonical NF-kB transcription factor subunit c-REL. Intriguingly, RNA-sequencing analysis of relb/nfkb2-deleted GC B cells revealed no overlap between the genes controlled by RELB/p52 and c-REL within GC B cells. This suggests that signaling through the separate NF-kB pathways in GC B cells results in the expression of different biological programs that are independently required for the maintenance of the GC reaction. In addition, we observed that human PCs and PC precursors within the LZ showed high protein levels of NF-kB2 compared to surrounding lymphocytes, suggesting a biological role for this subunit in PCs. Indeed, ablation of nfkb2 alone in GC B cells led to a dramatic decrease in antigen-specific serum IgG1 and antigen-specific IgG1-secreting cells. Interestingly however, the mice developed normal frequencies of PCs, suggesting a role for NF-kB2 in PC physiology rather than differentiation.
12

NF-kB- and mitochondria-linked signaling events that contribute to TNFa action in deferring physiological and chemotherapeutic drug-induced apoptosis in macrophages

Lo, Susan Z. Y. January 2008 (has links)
TNF defers apoptosis in macrophages undergoing spontaneous or pharmacologically (thapsigargin, ceramide, CCCP, etoposide or cisplatin)-induced apoptosis, as determined by measurements of caspase-3 activity and annexin-V staining (Chapter 2). The action requires TNF interaction with TNF-R1, not TNF-R2. Survival is uniquely reliant on the activity of the NF-B signaling pathway, and does not require activities arising from the PI3K/Akt, JNK, ERK, p38 MAP kinase or iNOS pathways (Chapter 3). Further, the general anti-apoptotic property of TNF and its specific antagonism of CCCP-induced apoptosis led to the finding that TNF action prevents cytochrome c release. This protection is likely mediated through effects on components of the MPTP itself, as TNF exhibited functional redundancy with the pore inhibitor cyclosporin A, and did not modify upstream events that promote MPTP opening during apoptosis, namely ROS production, cytosolic Ca2+ increase, or a reduction of total ATP (Chapter 4). Subsequent experiments with the mRNA synthesis inhibitor, actinomycin D, and the translation inhibitor, cycloheximide revealed that the protein(s) responsible for TNF-induced survival was transcribed and translated within 1 hr. However, western analyses provided no convincing evidence of the involvement of Mn-SOD, cIAP-1, XIAP, Bcl-2 or A1 in TNF cytoprotection (Chapter 5). Rather, microarray experiments identified the consistent induction of an early response gene, pim-1, within 30 min of TNF exposure (Chapter 6). This result was verified at the protein level with a specific Pim-1 antibody. Evidence was also found for induction of the anti-apoptotic protein A20, but only at mRNA level. Parthenolide, wortmannin, SP600125, PD98059, SB203580 or L-NAME1 acted against TNF-induced Pim-1 expression in a pattern that exactly matched the effects of these inhibitors on TNF-induced survival. That is, only parthenolide-mediated inactivation of NF-B abolished TNF-induced induction of Pim-1. TNF also stimulated the rapid phosphorylation (inactivation) of the pro-apoptotic BH3-only protein, Bad at Ser112 in a manner sensitive to NF-B inhibition, but not PI3K/Akt, JNK, ERK or p38 MAP kinase inhibition (Chapter 7). As Bad is a known substrate of Pim-1 and Bad 1 Parthenolide, wortmannin, SP600125, PD98059 and SB203580 are inhibitors of the NF-B, PI3K/Akt, JNK, ERK and p38 MAP kinase pathways, respectively. L-NAME inhibits iNOS. NF-B- and mitochondria-linked signaling events that contribute to TNF action in deferring physiological and chemotherapeutic drug-induced apoptosis in macrophages ii phosphorylation occurred coincident with Pim-1 upregulation, it is likely that Pim-1 kinase activity mediates the inactivation of Bad. The overall data therefore supports a model in which TNF ligation of TNF-R1 at the cell surface results in intracellular NF- B activation, leading to the induction of Pim-1 mRNA and protein, and the ensuing phosphorylation of Bad. Inactivation of pro-apoptotic Bad increases the resistance threshold of mitochondria to apoptotic insults, thereby reducing the occurrence of mitochondrial permeability transition, cytochrome c release and subsequent caspase-3 activation.
13

The role of A20 in the regulation of NF-k[kappa]B and myeloid homeostasis /

Lee, Eric Grant. January 2003 (has links)
Thesis (Ph. D.)--University of Chicago, Committee on Immunology, June 2003. / Includes bibliographical references. Also available on the Internet.
14

New insights into the disease mechanisms of Duchenne muscular dystrophy through analyses of the dystrophin, I[kappa]B[beta], and CASK proteins

Gardner, Katherine Lynn, January 2006 (has links)
Thesis (Ph. D.)--Ohio State University, 2006. / Title from first page of PDF file. Includes bibliographical references (p. 147-163).
15

Effect of RU486, a progesterone antagonist, on uterine progesterone receptor, embryonic development and ovarian function during early pregnancy in pigs

Mathew, Daniel J., Lucy, Matthew C. Geisert, Rodney D. January 2009 (has links)
The entire thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file; a non-technical public abstract appears in the public.pdf file. Title from PDF of title page (University of Missouri--Columbia, viewed on December 29, 2009). Thesis advisor: Dr. Matthew C. Lucy and Rodney D. Geisert. Vita. Includes bibliographical references.
16

Acetaminophen-induced proliferation of estrogen-responsive breast cancer cells is associated with increased c-mcy RNA expression and NF-kB activity

Gadd, Samantha. January 2001 (has links)
Thesis (Ph. D.)--West Virginia University, 2001. / Title from document title page. Document formatted into pages; contains xi, 147 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references (p. 128-143).
17

The dynamic nuclear transport regulation of NF-kB and IkBS

Lee, Sang-Hyun, January 2002 (has links)
Thesis (Ph. D.)--University of Missouri--Columbia, 2002. / Typescript. Vita. Includes bibliographical references (leaves 181-212). Also available on the Internet.
18

Characterization of the 5'flanking region of mitochondrial uncoupling protein 4 (UCP 4) and its relationship with nuclear factor-kappa B(NF-KB) in MPP+ -induced toxicity

Ho, Wing-man, Jessica., 何詠雯. January 2011 (has links)
published_or_final_version / Medicine / Doctoral / Doctor of Philosophy
19

TAK1 promotes ovarian cancer aggressiveness through activation of NF-kB pathway

Cai, Chunhui, 蔡春晖 January 2013 (has links)
Ovarian cancer is one of the most deadly female malignancies. Despite advances in the treatment of ovarian cancer for the past decade, the cure rate of this disease is moderately improved. Emerging evidence suggests the molecular personalized therapeutic approach become popular for human cancer treatment. The nuclear factor-kappa B (NF-κB) signaling pathway has been shown to play multiple roles in cancer progression such as anti-apoptosis, cell cycle, angiogenesis and metastasis. This study attempted to characterize the functional roles of transforming growth factor (TGF)-β-activating kinase 1 (TAK1) in the activation of NF-κB signaling. Importantly, this study provided evidence showing the significance of TAK1-NF-κB signaling axis in ovarian cancer aggressiveness during omental metastasis. Using quantitative RT-PCR and immunohistochemical analyses, TAK1 was frequently up-regulated and was significantly associated with high-grade (P=0.001), lymph node and distant metastasis (P=0.025), as well as a tendency toward advanced stage ovarian cancers (P=0.08). Functionally, enforced expression of TAK1 could augment cell proliferation, colony formation, anchorage-independent growth ability and migration/invasion in ovarian cancer cells. Conversely, repression of TAK1 expression by genetically or pharmaceutical approach abrogated these tumorigenic capacities including tumor growth in vivo. Furthermore, co-treatment of (5Z) -7-Oxozeaenol could sensitize ovarian cancer cells to cisplatin-induced cell apoptosis, indicating TAK1 is also involved in chemoresistance. Mechanistically, using Western blotting and NF-κB -reporter luciferase analyses, the elevation of TAK1 phosphorylation at Ser412 but not Thr184/187 was found to associate with the activation of NF-κB in ovarian cancer cells solely. A series of functional studies with genetic and pharmaceutical alterations revealed that the increased TAK1 Ser412 phosphorylation was required for exerting the ovarian cancer cell oncogenesis. Omental metastasis is the common phenomenon observed in most of advanced-stage ovarian cancer. Using omentum conditioned medium (OCM), the findings of this study showed that the omentum tissue was able to secrete numerous factors including chemokines such as GRO-α and IL8 in activating TAK1-NF-κB signaling cascade, which thereby induced increased oncogenic capacities in cell growth, migration and invasion. Taken together, this study suggests that TAK1-NF-κB signaling axis is indispensable for promoting oncogenesis of ovarian cancer and targeting this pathway may be a promising personalized cancer therapeutic approach in ovarian cancer. / published_or_final_version / Obstetrics and Gynaecology / Doctoral / Doctor of Philosophy
20

Dysregulation of nuclear factor-kappa B (NF-KB) signaling pathway in hepatocellular carcinoma

陳俊峯, Chan, Chun-fung, Anthony. January 2003 (has links)
published_or_final_version / Pathology / Master / Master of Philosophy

Page generated in 0.0578 seconds