• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Interference Management in Non-cooperative Networks

Motahari, Seyed Abolfazl 02 October 2009 (has links)
Spectrum sharing is known as a key solution to accommodate the increasing number of users and the growing demand for throughput in wireless networks. While spectrum sharing improves the data rate in sparse networks, it suffers from interference of concurrent links in dense networks. In fact, interference is the primary barrier to enhance the overall throughput of the network, especially in the medium and high signal-to-noise ratios (SNR’s). Managing interference to overcome this barrier has emerged as a crucial step in developing efficient wireless networks. This thesis deals with optimum and sub-optimum interference management-cancelation in non-cooperative networks. Several techniques for interference management including novel strategies such as interference alignment and structural coding are investigated. These methods are applied to obtain optimum and sub-optimum coding strategies in such networks. It is shown that a single strategy is not able to achieve the maximum throughput in all possible scenarios and in fact a careful design is required to fully exploit all available resources in each realization of the system. This thesis begins with a complete investigation of the capacity region of the two-user Gaussian interference channel. This channel models the basic interaction between two users sharing the same spectrum for data communication. New outer bounds outperforming known bounds are derived using Genie-aided techniques. It is proved that these outer bounds meet the known inner bounds in some special cases, revealing the sum capacity of this channel over a certain range of parameters which has not been known in the past. A novel coding scheme applicable in networks with single antenna nodes is proposed next. This scheme converts a single antenna system to an equivalent Multiple Input Multiple Output (MIMO) system with fractional dimensions. Interference can be aligned along these dimensions and higher multiplexing gains can be achieved. Tools from the field of Diophantine approximation in number theory are used to show that the proposed coding scheme in fact mimics the traditional schemes used in MIMO systems where each data stream is sent along a direction and alignment happens when several streams are received along the same direction. Two types of constellation are proposed for the encoding part, namely the single layer constellation and the multi-layer constellation. Using single layer constellations, the coding scheme is applied to the two-user $X$ channel. It is proved that the total Degrees-of-Freedom (DOF), i.e. $\frac{4}{3}$, of the channel is achievable almost surely. This is the first example in which it is shown that a time invariant single antenna system does not fall short of achieving this known upper bound on the DOF. Using multi-layer constellations, the coding scheme is applied to the symmetric three-user GIC. Achievable DOFs are derived for all channel gains. It is observed that the DOF is everywhere discontinuous (as a function of the channel gain). In particular, it is proved that for the irrational channel gains the achievable DOF meets the upper bound of $\frac{3}{2}$. For the rational gains, the achievable DOF has a gap to the known upper bounds. By allowing carry over from multiple layers, however, it is shown that higher DOFs can be achieved for the latter. The $K$-user single-antenna Gaussian Interference Channel (GIC) is considered, where the channel coefficients are NOT necessarily time-variant or frequency selective. It is proved that the total DOF of this channel is $\frac{K}{2}$ almost surely, i.e. each user enjoys half of its maximum DOF. Indeed, we prove that the static time-invariant interference channels are rich enough to allow simultaneous interference alignment at all receivers. To derive this result, we show that single-antenna interference channels can be treated as \emph{pseudo multiple-antenna systems} with infinitely-many antennas. Such machinery enables us to prove that the real or complex $M \times M$ MIMO GIC achieves its total DOF, i.e., $\frac{MK}{2}$, $M \geq 1$. The pseudo multiple-antenna systems are developed based on a recent result in the field of Diophantine approximation which states that the convergence part of the Khintchine-Groshev theorem holds for points on non-degenerate manifolds. As a byproduct of the scheme, the total DOFs of the $K\times M$ $X$ channel and the uplink of cellular systems are derived. Interference alignment requires perfect knowledge of channel state information at all nodes. This requirement is sometimes infeasible and users invoke random coding to communicate with their corresponding receivers. Alternative interference management needs to be implemented and this problem is addressed in the last part of the thesis. A coding scheme for a single user communicating in a shared medium is proposed. Moreover, polynomial time algorithms are proposed to obtain best achievable rates in the system. Successive rate allocation for a $K$-user interference channel is performed using polynomial time algorithms.
2

Interference Management in Non-cooperative Networks

Motahari, Seyed Abolfazl 02 October 2009 (has links)
Spectrum sharing is known as a key solution to accommodate the increasing number of users and the growing demand for throughput in wireless networks. While spectrum sharing improves the data rate in sparse networks, it suffers from interference of concurrent links in dense networks. In fact, interference is the primary barrier to enhance the overall throughput of the network, especially in the medium and high signal-to-noise ratios (SNR’s). Managing interference to overcome this barrier has emerged as a crucial step in developing efficient wireless networks. This thesis deals with optimum and sub-optimum interference management-cancelation in non-cooperative networks. Several techniques for interference management including novel strategies such as interference alignment and structural coding are investigated. These methods are applied to obtain optimum and sub-optimum coding strategies in such networks. It is shown that a single strategy is not able to achieve the maximum throughput in all possible scenarios and in fact a careful design is required to fully exploit all available resources in each realization of the system. This thesis begins with a complete investigation of the capacity region of the two-user Gaussian interference channel. This channel models the basic interaction between two users sharing the same spectrum for data communication. New outer bounds outperforming known bounds are derived using Genie-aided techniques. It is proved that these outer bounds meet the known inner bounds in some special cases, revealing the sum capacity of this channel over a certain range of parameters which has not been known in the past. A novel coding scheme applicable in networks with single antenna nodes is proposed next. This scheme converts a single antenna system to an equivalent Multiple Input Multiple Output (MIMO) system with fractional dimensions. Interference can be aligned along these dimensions and higher multiplexing gains can be achieved. Tools from the field of Diophantine approximation in number theory are used to show that the proposed coding scheme in fact mimics the traditional schemes used in MIMO systems where each data stream is sent along a direction and alignment happens when several streams are received along the same direction. Two types of constellation are proposed for the encoding part, namely the single layer constellation and the multi-layer constellation. Using single layer constellations, the coding scheme is applied to the two-user $X$ channel. It is proved that the total Degrees-of-Freedom (DOF), i.e. $\frac{4}{3}$, of the channel is achievable almost surely. This is the first example in which it is shown that a time invariant single antenna system does not fall short of achieving this known upper bound on the DOF. Using multi-layer constellations, the coding scheme is applied to the symmetric three-user GIC. Achievable DOFs are derived for all channel gains. It is observed that the DOF is everywhere discontinuous (as a function of the channel gain). In particular, it is proved that for the irrational channel gains the achievable DOF meets the upper bound of $\frac{3}{2}$. For the rational gains, the achievable DOF has a gap to the known upper bounds. By allowing carry over from multiple layers, however, it is shown that higher DOFs can be achieved for the latter. The $K$-user single-antenna Gaussian Interference Channel (GIC) is considered, where the channel coefficients are NOT necessarily time-variant or frequency selective. It is proved that the total DOF of this channel is $\frac{K}{2}$ almost surely, i.e. each user enjoys half of its maximum DOF. Indeed, we prove that the static time-invariant interference channels are rich enough to allow simultaneous interference alignment at all receivers. To derive this result, we show that single-antenna interference channels can be treated as \emph{pseudo multiple-antenna systems} with infinitely-many antennas. Such machinery enables us to prove that the real or complex $M \times M$ MIMO GIC achieves its total DOF, i.e., $\frac{MK}{2}$, $M \geq 1$. The pseudo multiple-antenna systems are developed based on a recent result in the field of Diophantine approximation which states that the convergence part of the Khintchine-Groshev theorem holds for points on non-degenerate manifolds. As a byproduct of the scheme, the total DOFs of the $K\times M$ $X$ channel and the uplink of cellular systems are derived. Interference alignment requires perfect knowledge of channel state information at all nodes. This requirement is sometimes infeasible and users invoke random coding to communicate with their corresponding receivers. Alternative interference management needs to be implemented and this problem is addressed in the last part of the thesis. A coding scheme for a single user communicating in a shared medium is proposed. Moreover, polynomial time algorithms are proposed to obtain best achievable rates in the system. Successive rate allocation for a $K$-user interference channel is performed using polynomial time algorithms.
3

Fundamental Limits of Communication Channels under Non-Gaussian Interference

Le, Anh Duc 04 October 2016 (has links)
No description available.
4

Distributed Joint Source-Channel Coding For Multiple Access Channels

Rajesh, R 05 1900 (has links)
We consider the transmission of correlated sources over a multiple access channel(MAC). Multiple access channels are important building blocks in many practical communication systems, e.g., local area networks(LAN), cellular systems, wireless multi-hop networks. Thus this topic has been studied for last several decades. One recent motivation is estimating a random field via wireless sensor networks. Often the sensor nodes are densely deployed resulting in correlated observations. These sensor nodes need to transmit their correlated observations to a fusion center which uses this data to estimate the sensed random field. Sensor nodes have limited computational and storage capabilities and very limited energy. Since transmission is very energy intensive, it is important to minimize it. This motivates our problem of energy efficient transmission of correlated sources over a sensor network. Sensor networks are often arranged in a hierarchical fashion. Neighboring nodes can first transmit their data to a cluster head which can further compress information before transmission to the fusion center. The transmission of data from sensor nodes to their cluster-head is usually through a MAC. At the fusion center the underlying physical process is estimated. The main trade-off possible is between the rates at which the sensors send their observations and the distortion incurred in estimation at the fusion center. The availability of side information at the encoders and/or the decoder can reduce the rate of transmission. In this thesis, the above scenario is modeled as an information theoretic problem. Efficient joint source-channel codes are discussed under various assumptions on side information and distortion criteria. Sufficient conditions for transmission of discrete/continuous alphabet sources with a given distortion over a discrete/continuous alphabet MAC are given. We recover various previous results as special cases from our results. Furthermore, we study the practically important case of the Gaussian MAC(GMAC) in detail and propose new joint source-channel coding schemes for discrete and continuous sources. Optimal schemes are identified in different scenarios. The protocols like TDMA, FDMA and CDMA are widely used across systems and standards. When these protocols are used the MAC becomes a system of orthogonal channels. Our general conditions can be specialized to obtain sufficient conditions for lossy transmission over this system. Using this conditions, we identify an optimal scheme for transmission of Gaussian sources over orthogonal Gaussian channels and show that the Amplify and Forward(AF) scheme performs close to the optimal scheme even at high SNR. Next we investigate transmission of correlated sources over a fast fading MAC with perfect or partial channel state information available at both the encoders and the decoder. We provide sufficient conditions for transmission with given distortions. We also provide power allocation policies for efficient transmission. Next, we use MAC with side information as a building block of a hierarchical sensor network. For Gaussian sources over Gaussian MACs, we show that AF performs well in such sensor network scenarios where the battery power is at a premium. We then extend this result to the hierarchical network scenario and show that it can perform favourably to the Slepian-Wolf based source coding and independent channel coding scheme. In a hierarchical sensor network the cluster heads often need to send only a function of the sensor observations to the fusion center. In such a setup the sensor nodes can compress the data sent to the cluster head exploiting the correlation in the data and also the structure of the function to be computed at the cluster head. Depending upon the function, exploiting the structure of the function can substantially reduce the data rate for transmission. We provide efficient joint source-channel codes for transmitting a general class of functions of the sources over the MAC.
5

Resource Allocation in Wireless Networks for Secure Transmission and Utility Maximization

Sarma, Siddhartha January 2016 (has links) (PDF)
Resource allocation in wireless networks is one of the most studied class of problems. Generally, these problems are formulated as utility maximization problems under relevant constraints. The challenges posed by these problems vary widely depending on the nature of the utility function under consideration. Recently, the widespread prevalence of wireless devices prompted researchers and engineers to delve into the security issues of wireless communication. As compared to the wired medium, ensuring security for the wireless medium is more challenging mainly due to the broadcast nature of the transmission. But the ongoing research on physical layer security promises robust and reliable security schemes for wireless communication. Contrary to conventional cryptographic schemes, physical layer security techniques are impregnable as the security is ensured by the inherent randomness present in the wireless medium. In this thesis, we consider several wireless scenarios and propose secrecy enhancing resource allocation schemes for them in the first few chapters. We initially address the problem of secure transmission by following the conventional approach in the secrecy literature|secrecy rate maximization. Needless to say, in these chapters, secrecy rate is the utility function and the constraints are posed by the available power budget. Then we consider a pragmatic approach where we target the signal-to-noise ratio (SNR) of participating nodes and ensure information secrecy by appropriately constraining the SNRs of those nodes. In those SNR based formulations, SNR at the destination is the utility function and we are interested in maximizing it. In the last two chapters, we study two scenarios in a non-secrecy setting. In one of them, end-to-end data rate is the utility, whereas, in the other one, two utility functions|based on revenue generated|are defined for two rational agents in a game-theoretic setting. In the second chapter, we study parallel independent Gaussian channels with imperfect channel state information (CSI) for the eavesdropper. Firstly, we evaluate the probability of zero secrecy rate in this system for (i) given instantaneous channel conditions and (ii) a Rayleigh fading scenario. Secondly, when non-zero secrecy is achievable in the low SNR regime, we aim to solve a robust power allocation problem which minimizes the outage probability at a target secrecy rate. In the third, fourth and fifth chapters, we consider scenarios where the source node transmits a message to the destination using M parallel amplify-and-forward (AF) relays in the presence of a single or multiple eavesdroppers. The third chapter addresses the problem of the maximum achievable secrecy rate for two specific network models: (a) degraded eavesdropper channel with complex channel gain and (b) scaled eavesdropper channel with real-valued channel gains. In the fourth chapter, we consider the SNR based approach and address two problems: (i) SNR maximization at the destination and (ii) Total relay power minimization. In the fifth chapter, we assume that the relay nodes are untrusted and to counter them, we deliberately introduce artificial noise in the source message. For this model, we propose and solve SNR maximization problems for the following two scenarios: (i) Total power constraint on all the relay nodes and (ii) Individual power constraints on each of the relay nodes. In the sixth chapter, we address the problem of passive eavesdroppers in multi-hop wire-less networks using the technique of friendly jamming. Assuming decode-and-forward (DF) relaying, we consider a scheduling and power allocation (PA) problem for a multiple-source multiple-sink scenario so that eavesdroppers are jammed, and source-destination throughput targets are met. When channel state information (CSI) of all the node are available, we intend to minimize the total power consumption of all the transmitting nodes. In the absence of eavesdroppers CSI, we minimize vulnerability region of the network. In chapter seven, the problem of cooperative beamforming for maximizing the achievable data rate of two-hop amplify-and-forward (AF) network (in the absence of eavesdropper(s)) is considered. Along with an individual power constraint on each of the relay nodes, we consider a weighted sum power constraint. To solve this problem, we propose a novel algorithm based on the Quadratic Eigenvalue Problem (QEP) and discuss its convergence. In chapter eight, we study a Stackelberg game between a base station and a multi-antenna power beacon for wireless energy harvesting in a multiple sensor node scenario. Assuming imperfect CSI between the sensor nodes and the power beacon, we propose a utility function that is based on throughput non-outage probability at the base station. We find the optimal strategies for the base station and the power beacon that maximize their respective utility functions.

Page generated in 0.0655 seconds