• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 352
  • 137
  • 71
  • 63
  • 45
  • 19
  • 18
  • 11
  • 11
  • 10
  • 6
  • 5
  • 5
  • 5
  • 2
  • Tagged with
  • 895
  • 139
  • 114
  • 69
  • 69
  • 66
  • 60
  • 56
  • 55
  • 51
  • 49
  • 48
  • 48
  • 47
  • 46
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Behaviour of PVC Encased Reinforced Concrete Walls under Eccentric Axial Loading

Abdel Havez, Amr January 2014 (has links)
Stay-in-place (SIP) formwork has been used as an alternative to the conventional formwork system. The systems are mainly assembled on site, hence simplifying the construction process and reducing the construction time as the removal procedure has been eliminated. SIP formwork systems can be divided into two main categories; structural and non-structural formwork, based on their contribution to resist applied loads. The structural formwork provides the same advantages as the non-structural formwork, in addition to its contribution to resist the applied loads. As a result, the cross section and the reinforcement of the structural member can be reduced. Recently, polyvinyl chloride (PVC) has been used as a stay-in-place formwork because of its lower cost compared to other materials, durability, and ease to assemble. The PVC SIP formwork consists of interconnected elements; panels and connectors that serve as permanent formwork for the concrete walls. In this study, the behaviour of the PVC encased reinforced concrete walls under eccentric compression loading was investigated. The variables in this study were the type of the specimen (PVC encased or control), the longitudinal reinforcement (4-10M or 4-15M rebars) and the eccentricity of the applied compression load (33.87 mm, 67.73 mm and 101.6 mm). Generally, the control walls (without PVC encasement) failed by yielding of the steel followed by crushing of the concrete, or by crushing of the concrete without yielding of the steel. For the PVC encased walls, buckling of the PVC occurred after the concrete crushed. The PVC encased specimens showed a higher peak load than their peer control walls. The effect of the PVC on increasing the ultimate capacity at a given eccentricity was more significant for the walls reinforced with 4-10M than the walls reinforced with 4-15M. For the lowest reinforcement ratio (4-10M), the PVC encased specimens showed an increase in peak load by 37.2% and 17.1% at an eccentricity of 67.73 mm and 101.6 mm, respectively. When the reinforcement was increased to 4-15 M, the increase in the peak load dropped at all eccentricities to 10%. For the vertical and the mid-span deflection, the PVC encased specimens and the control specimens showed the same values. Also, the test results showed an increase in the energy absorption capacity for the PVC encased specimens compared to the controls specimens, where the effect for the walls reinforced with 4-10M was higher than the walls reinforced with 4-15M at a given eccentricity. An analytical model was developed to predict the ultimate load capacity of the specimens taking into consideration the effect of the PVC on the load carrying capacity of the walls. The provision was derived based on the moment magnification factor method in which the effect of secondary stresses associated with the column deformations was taken into consideration. The calculated capacities of the PVC encased specimens showed a conservative error of 5.9% on average.
172

Modelling of losses in multi-stage axial compressors with subsonic conditions / William James Swift

Swift, William James January 2003 (has links)
The need was identified to develop an analytical performance prediction code for subsonic multistage axial compressors that can be included in network analysis software. It was found that performance calculations based on an elementary one-dimensional meanline prediction method could achieve remarkable accuracy, provided that sound models are used for the losses, deviation and the onset of rotating stall. Consequently, this study focuses on gaining more expertise on the modelling of losses in such compressors through investigating the mechanisms responsible, the methods of predicting them, their implementation and possible usage. Internal losses are seen as mechanisms that increase the entropy of the working fluid through the compressor and it was found that, at a fundamental level, all internal losses are a direct result of viscous shearing that occurs wherever there are velocity gradients. Usually the methodology employed to predict the magnitudes of these mechanisms uses theoretically separable loss components, ignoring the mechanisms with negligible velocity gradients. For this study these components were presented as: Blade profile losses, endwall losses including tip leakage and secondary losses, part span shroud losses, other losses, losses due to high subsonic Mach numbers and incidence loss. A preliminary performance prediction code, with the capability of interchanging of the different loss models, is presented. Verification was done by comparing the results with those predicted by a commercial software package and the loss models were evaluated according to their ease of implementation and deviation from the predictions of the commercial package. Conclusions were made about the sensitivity of performance prediction to using the different loss models. Furthermore, the combination of loss models that include the most parameters and gave the best comparison to the commercial software predictions was selected in the code to perform parametric studies of the loss parameters on stage efficiency. This was done to illustrate the ability of the code for performing such studies to be used as an aid in understanding compressor design and performance or for basic optimization problems. It can therefore be recommended that the preliminary code can be implemented in an engineering tool or network analysis software. This may however require further verification, with a broader spectrum of test cases, for increased confidence as well as further study regarding aspects like multi-stage annulus blockage and deviation / Thesis (M.Ing. (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2004.
173

The Influence of Axial Load and Prestress on The Shear Strength of Web-shear Critical Reinforced Concrete Elements

Xie, Liping 28 September 2009 (has links)
Experimental research was conducted to investigate the influence of axial load and prestress on the shear strength of web-shear critical reinforced concrete elements. The ability of two design codes, the ACI code and the CSA code, to accurately predict the shear strength of web-shear critical reinforced concrete elements was investigated through two sets of experiments performed for this thesis, the panel tests and the beam tests. The experimental results indicated that the CSA code provided better predictions for the shear strength of web-shear critical reinforced concrete members subjected to combined axial force and shear force than the ACI code. A total of six panels, reinforced almost identically, were tested under different combinations of uni-axial stress and shear stress. In addition to the panel tests, a total of eleven I-shaped beams, with the same web thickness, were tested under different combinations of axial force and shear force. The parameters for these beams were the amount of longitudinal reinforcement, the amount of transverse reinforcement, and the thickness of the flanges. The beams were simply supported, but the loading geometry was specially designed to simulate the loading conditions in continuous beams near points of inflection. The experimental results from the panel tests and the beam tests followed a similar trend of variations. Both the inclined cracking strength and the ultimate shear strength were increased by compression and were reduced by tension. The specimens subjected to very high compression failed explosively without developing many cracks. The inclined cracking strength could be predicted with good accuracy if the influence of the co-existing compression on the cracking strength of the concrete and the non-uniform distribution of the stresses over the depth of the cross-section were considered. The strength predictions using the ACI code for these tests were neither accurate nor consistent. The ACI code was unconservative for members subjected to compression and was excessively conservative for members subjected to tension. In contrast, the strength predictions using the CSA code for these tests were generally conservative and consistent. The CSA code accurately predicted the response of specimens subjected to compression and was somewhat conservative in predicting the shear strength of specimens subjected to tension.
174

Predicting the Effect of Catalyst Axial Active Site Distributions on a Diesel Oxidation Catalyst Performance

Al-Adwani, Suad January 2012 (has links)
Zone-coated diesel oxidation catalysts (DOCs) can be used to obtain overall improved performance in oxidation reaction extents. However, why this occurs and under what conditions an impact is expected are unknown. In order to demonstrate why these catalysts work better than their standard counterparts and how significant the improved performance is, the CO oxidation performance over a series of Pt−Pd/Al2O3 catalysts, each with a different distribution of precious metal down the length, while maintaining equivalent totals of precious metal, was modeled. Simulations with different flow rates, ramp rates, steady-state temperatures at the end of the ramp rate, different total precious metal loadings, and CO inlet values were compared. At conversions less than 50%, the most significant differences were noted when the temperature was ramped to just at the CO oxidation light-off point (a typical measure of 50% conversion/oxidation), with catalysts containing more precious metal at the downstream portions leading to better light-off conversion performance. However, in terms of cumulative emissions over a long period of time, a “front-loaded” design proved best. These results are readily explained by decreased CO poisoning and the propagation of the heat derived from the exotherm from the front to the rear of the catalyst. Also, although the trends were the same, regardless of change in the parameter, the impact of different distributions was more apparent under conditions where a catalyst would be challenged, i.e., at low temperature ramp rates, higher CO inlet concentrations, and lower amounts of total catalyst used. At higher ramp rates, the input heat from the entering gas stream played an increasingly important role, relative to conduction associated with the exotherm, dampening the effects of the catalyst distribution. Therefore, although catalysts that are zone-coated with precious metals, or any active sites, could prove better in terms of performance than homogeneously distributed active site catalysts, this improvement is only significant under certain reaction conditions. In a mixture of three reactants, CO, C3H6 and NO oxidation, it was found that a loading a larger amount of active sites in the catalyst middle, maintained better CO and C3H6 oxidation but not NO oxidation, which required the whole catalyst length. A faster light-off conversion was also related to higher amount of precious metal at the catalyst outlet. The CO conversion performance for a variety of distributed precious metal designs was evaluated as a function of exposure time to sulphur and the spatial accumulation profile of sulphur along the monolith length was predicted. The results illustrate that the sulphur accumulates near the catalyst inlet and decreases toward the outlet, resulting in shifting the reaction zones further toward the catalyst outlet. With sulfation, light-off temperatures (T50) increased and the time for back to front reaction propagation also increased. A back loaded catalyst resulted in the best light-off conversion compared to the other catalyst designs and a middle loaded catalyst maintained a higher overall conversion if sulphur poisoning takes place. These catalyst designs were also tested under thermal aging conditions by using a second order sintering model integrated with the CO oxidation reaction model. The spatial normalized dispersion profiles along the monolith showed that the catalyst outlet experienced significant damage relative to the inlet due to sintering. A front loaded catalyst design had the highest catalytic activity due its resistance to sintering.
175

Behaviour and design of cold-formed steel hollow flange sections under axial compression

Zhao, Wen-Bin January 2006 (has links)
The use of cold-formed steel structures is increasing rapidly around the world due to the many advances in construction and manufacturing technologies and relevant standards. However, the structural behaviour of these thin-walled steel structures is characterised by a range of buckling modes such as local buckling, distortional buckling or flexural torsional buckling. These buckling problems generally lead to severe reduction and complicated calculations of their member strengths. Therefore it is important to eliminate or delay these buckling problems and simplify the strength calculations of cold-formed steel members. The Hollow Flange Beam with two triangular hollow flanges, developed by Palmer Tube Mills Pty Ltd in the mid-1990s, has an innovative section that can delay the above buckling problems efficiently. This structural member is considered to combine the advantages of hot-rolled I-sections and conventional cold-formed sections such as C- and Z-sections (Dempsey, 1990). However, this structural product was discontinued in 1997 due to the complicated manufacturing process and the expensive electric resistance welding method associated with severe residual stresses (Doan and Mahendran, 1996). In this thesis, new fastening methods using spot-weld, screw fastener and self-pierced rivet were considered for the triangular Hollow Flange Beams (HFBs) and the new rectangular hollow flange beams (RHFBs). The structural behaviour of these types of members in axial compression was focused in this research project. The objective of this research was to develop suitable design models for the members with triangular and rectangular hollow flanges using new fastening methods so that their behaviour and ultimate strength can be predicted accurately under axial compression. In the first stage of this research a large number of finite element analyses (FEA) was conducted to study the behaviour of the electric resistance welded, triangular HFBs (ERW-HFBs) under axial compression. Experimental results from previous researchers were used to verify the finite element model and its results. Appropriate design rules based on the current design codes were recommended. Further, a series of finite element models was developed to simulate the corresponding HFBs fastened using lap-welds (called LW-HFBs) and screw fasteners or spot-welds or self-piercing rivets (called S-HFBs). Since the test specimens of LW-HFBs and S-HFBs were unavailable, the finite element results were verified by comparison with the experimental results of ERW-HFB with reasonable agreement. In the second stage of this research, a total of 51 members with rectangular hollow flanges including the RHFBs made from a single plate and 3PRHFBs made from three plates fastened with spot-welds and screws was tested under axial compression. The finite element models based on the tests were then developed that included the new fasteners, contact simulations, geometric imperfections and residual stresses. The improved finite element models were able to simulate local buckling, yielding, global buckling and local/global buckling interaction failure associated with gap opening as agreed well with the corresponding full-scale experimental results. Extensive parametric studies for the RHFBs made from a single plate and the 3PRHFBs made from three plates were undertaken using finite element analyses. The analytical results were compared with the predictions using the current design rules based on AS 4100, AS/NZS 4600 and the new direct strength method. Appropriate design formulae based on the direct strength method for RHFBs and 3PRHFBs were developed. This thesis has thus enabled the accurate prediction of the behaviour and strength of the new compression members with hollow flanges and paved the way for economical and efficient use of these members in the industry.
176

Study of abrupt transitions in two-dimensional ideal flows :

Kravchuk, Sergiy. Unknown Date (has links)
The purpose of this research is the development of a method for studying a two-dimensional semi-linear elliptic partial differential equation in an infinite stripe with slow variations of one of the boundaries. The problem is reformulated as a boundary value problem for a semi-linear elliptic equation with a small parameter at one higher derivative (the singular perturbation parameter). The method is based on the boundary function of Tikhonov, shaped by Vasil'eva and Butuzov for a one-dimensional case. The developed method has clear parallels with the one-dimensional boundary function method. / Thesis (PhD)--University of South Australia, 2006.
177

Study of abrupt transitions in two-dimensional ideal flows: a singular perturbation approach

Kravchuk, Sergiy January 2006 (has links)
The purpose of this research is the development of a method for studying a two-dimensional semi-linear elliptic partial differential equation in an infinite stripe with slow variations of one of the boundaries. The problem is reformulated as a boundary value problem for a semi-linear elliptic equation with a small parameter at one higher derivative (the singular perturbation parameter). The method is based on the boundary function of Tikhonov, shaped by Vasil?eva and Butuzov for a one-dimensional case. The developed method has clear parallels with the one-dimensional boundary function method.
178

Experimental and analytical evaluation of FRP-confined large size reinforced concrete columns

Rocca, Silvia, January 2007 (has links) (PDF)
Thesis (Ph. D.)--University of Missouri--Rolla, 2007. / Vita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed February 12, 2008) Includes bibliographical references.
179

Loading rate effects on axial pile capacity in clays /

Garner, Michael Paul, January 2007 (has links) (PDF)
Thesis (M.S.)--Brigham Young University. Dept. of Civil and Environmental Engineering, 2007. / Includes bibliographical references (p. 119-122).
180

Behaviour of high-strength concrete under biaxial loading conditions /

Hussein, Amgad Ahmed. January 1998 (has links)
Thesis (Ph. D.), Memorial University of Newfoundland, 1998. / Bibliography: leaves 229-245.

Page generated in 0.2116 seconds