• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 352
  • 137
  • 71
  • 63
  • 45
  • 19
  • 18
  • 11
  • 11
  • 10
  • 6
  • 5
  • 5
  • 5
  • 2
  • Tagged with
  • 895
  • 139
  • 114
  • 69
  • 69
  • 66
  • 60
  • 56
  • 55
  • 51
  • 49
  • 48
  • 48
  • 47
  • 46
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

SPATIAL CONFIGUARION AND VEHICLE FLOW : TOPOLOGICALLY ANALYZING AND MODELING THE HONG KONG STREET NETWORK

Liu, Chengke January 2007 (has links)
<p>Space syntax has been considered to be an important theory and analytical tool to study the correlation between spatial configuration and human social activities. But its traditional Axial Model has limitations in representing street. The conclusion got form Axial Model,that spatial configuration of street network can well predict the traffic flow, has been widely doubled.</p><p>In order to testify the conclusion, the thesis sets out to use Axial, Stroke and Named Street Models to model and analyze Hong Kong street network. Our research methodology is first to create and study different models of street network in pilot study area- Kowloon peninsula of Hong Kong, from the perspectives of space syntax theory and properties of complicated network. Through the pilot study, tentative correlations and conclusions could be derived, which are verified through the case study of whole street network of Hong Kong by taking samples from three different sampling criteria.</p><p>Through analysis, we find out that local integration best correlates with vehicle flow, and this correlation is called predictability of street network. Through comparisons of different models in terms of predictability, we conclude that stroke model has the best ability to predict vehicle flow. By analyzing the axial model of Hong Kong street network and comparing its result to early study, we prove that axial model does have limitations to represent street network. Also we find out all models of street network have properties of small world network and scale free, from the topological studies of these models.</p><p>In the research of this thesis, we develop an extension of ArcGIS, named Axwoman 4 in order to calculate and extract space syntax parameters from different models. And important implementation algorithms are introduced in this thesis.</p><p>The thesis is summed up at the end, and future research directions are given.</p>
152

Effects of biaxial stretch on arteriolar function in vitro

Guo, Hong 02 June 2009 (has links)
Mounting evidence suggests that the normal biomechanical state of arteries may include a nearly equibiaxial intramural stress, and that arteries tend to undergo rapid and dramatic remodeling when perturbed from this normal state. Technical developments in the early 1980s and late 1990s enabled in vitro and ex vivo studies, respectively, of isolated perfused microvessels, and it is clear that they share many similarities in behavior with arteries. To date, however, there has been no systematic study of the effects of biaxial loading on the biomechanical behavior of arterioles. In this project, we describe a modification to a prior in vitro arteriole test system that allowed us to investigate the role of altered axial stretch on the passive, myogenic, and fully contracted biaxial behavior of isolated rat cremaster arterioles. We show that axial stretches from 85% to 110% of normal values induce modest changes in the measured circumferential and axial stress-stretch behavior and similarly in traditional measures of distensibility and myogenic index. Nevertheless, altered axial stretch has a dramatic affect on the biaxial state of stress and it appears that near equibiaxial stress occur at axial stretches larger than those used previously. Whereas this finding will not affect prior estimates of material and functional behavior, it may have important implications for the design of long-term ex vivo and in vivo studies wherein vessel growth and remodeling are critical.
153

Response of Reinforced Concrete Columns Subjected to Impact Loading

Imbeau, Paul 16 July 2012 (has links)
Reinforced Concrete (RC) bridge piers, RC columns along exterior of buildings or those located in parking garages are designed to support large compressive axial loads but are vulnerable to transverse out-of-plane loadings, such as those arising from impacts or explosions. To address a lack of understanding regarding blast and impact response of RC members and the need for retrofit techniques to address deficiencies in existing structures, a multi-disciplinary team including various institutes of the National Research Council and the University of Ottawa has initiated work towards developing a fibre reinforced polymer composite protection system for RC columns subjected to extreme shocks. This thesis will focus on the impact program of the aforementioned project. An extensive literature review was conducted to gain a better understanding of: impact loading and associated dynamic effects; experimental testing of RC members subjected to impact; experimental testing of axially loaded members; and retrofit methods for the protection of RC under impact loading. Five half-scale RC columns were constructed and tested using a drop-weight impact machine and two additional specimens were tested under static loading. Deflections, strain distributions within the columns, impact loads and reaction loads were measured during the testing of the built RC members. Comparisons of experimental datum were established between members with differing levels of axial load and between a retrofitted and a non-retrofitted member. Single-degree-of-freedom analysis was used to obtain the predicted response of certain columns under impact loading allowing for comparisons with experimental data.
154

New methods of mass analysis with quadrupoles with added octopole fields

Moradian, Annie 05 1900 (has links)
Mass selective axial ejection of ions and mass analysis with a stability island with linear quadrupoles with added octopole fields are described. With mass selective axial ejection, quadrupoles with 2.0% and 2.6% added octopole fields have been tested and compared to a conventional quadrupole. The effects of trapping ions at different q values, excitation voltage, scan direction, balanced and unbalanced rf voltages on the rods, and dc applied between the rods have been investigated. The highest scan speeds and highest resolution are obtained with resonant excitation and ejection at high q (q = 0.8). With axial ejection, the quadrupole with a 2.0% added octopole field provides mass resolution and ejection efficiencies similar to a conventional rod set. Quadrupole, dipole and simultaneous dipole-dipole excitation between the x and y rod pairs were compared and no advantage was found with quadrupole or dipole-dipole excitation. The effects of scan speed were investigated and a resolution at half height of about 1600 is possible at scan speeds up to 5000 Th/s. Mass analysis using islands of stability was investigated with a quadrupole with2.0% added octopole field. The island of stability is formed with auxiliary excitation. The experiments confirm the predictions of the simulations. With the resolving dc applied to the quadrupole so that the Mathieu parameter a>0, conventional mass analysis with applied rf and dc and no auxiliary excitation is possible. In this case use of an island of stability yields similar peak shape and resolution. However with the polarity of the resolving dc reversed so that a<0, only very low resolution can be obtained; the added octopole prevents conventional mass analysis. By using a stability island when a<0, the resolution is substantially improved.
155

Modelización del flujo en ventiladores axiales de paso variable

Ballesteros Tajadura, Rafael 01 June 1995 (has links)
El estudio presentado trata sobre la modelización del flujo en ventiladores axiales analizando la influencia de ciertos parámetros de diseño, en especial del ángulo de calado de los álabes.Para ello se ha realizado un estudio experimental en un ventilador axial. Una primera fase de este estudio ha consistido en la determinación de las curvas características del ventilador, analizando el efecto sobre ellas de la variación del ángulo de calado, de la solidez y de la velocidad de rotación. A partir de los datos proporcionados por esta fase, se seleccionaron una serie de posiciones del ángulo de calado, y para cada unode ellos, ciertos caudales de funcionamiento próximos al punto de máximo rendimiento. Para todos estos caudales se obtuvieron los campos develocidades a la salida del rodete, para lo cual se desarrolló una metodología experimental basada en la anemometría térmica, que incluyó tanto el diseño, la construcción y la calibración de sondas triples de hilo caliente, como el desarrollo de las técnicas de adquisición y tratamiento necesarias.Además de obtener experimentalmente las características del flujo en un ventilador axial, se ha abordado la modelización numérica del mismo. Se hace un repaso de los distintos modelos de flujo y métodos de resolución utilizados habitualmente en turbomáquinas y se ha elegido una formulación cuasi-tridimensional, calculando el flujo, por un lado, en superficies álabe a álabe, y por otro, en una sección meridional, imponiendo la condición de equilibrio radial a la salida de los álabes. Para el cálculo del flujo deálabe a álabe se ha acoplado un modelo no viscoso, resolviendo las ecuaciones de Euler mediante un método "time-marching" y unadiscretización por volúmenes finitos, con el cálculo de la capa límite por un método integral acoplado al cálculo no viscoso mediante el concepto de la velocidad de transpiración.La modelización numérica realizada se adapta de forma satisfactoria a la estructura de flujo obtenida experimentalmente en las zonas medias e inferiores del canal; el comportamiento global del ventilador es modelizado correctamente, aunque las predicciones teóricas son algo superiores a las evidencias experimentales.
156

Predicting the Effect of Catalyst Axial Active Site Distributions on a Diesel Oxidation Catalyst Performance

Al-Adwani, Suad January 2012 (has links)
Zone-coated diesel oxidation catalysts (DOCs) can be used to obtain overall improved performance in oxidation reaction extents. However, why this occurs and under what conditions an impact is expected are unknown. In order to demonstrate why these catalysts work better than their standard counterparts and how significant the improved performance is, the CO oxidation performance over a series of Pt−Pd/Al2O3 catalysts, each with a different distribution of precious metal down the length, while maintaining equivalent totals of precious metal, was modeled. Simulations with different flow rates, ramp rates, steady-state temperatures at the end of the ramp rate, different total precious metal loadings, and CO inlet values were compared. At conversions less than 50%, the most significant differences were noted when the temperature was ramped to just at the CO oxidation light-off point (a typical measure of 50% conversion/oxidation), with catalysts containing more precious metal at the downstream portions leading to better light-off conversion performance. However, in terms of cumulative emissions over a long period of time, a “front-loaded” design proved best. These results are readily explained by decreased CO poisoning and the propagation of the heat derived from the exotherm from the front to the rear of the catalyst. Also, although the trends were the same, regardless of change in the parameter, the impact of different distributions was more apparent under conditions where a catalyst would be challenged, i.e., at low temperature ramp rates, higher CO inlet concentrations, and lower amounts of total catalyst used. At higher ramp rates, the input heat from the entering gas stream played an increasingly important role, relative to conduction associated with the exotherm, dampening the effects of the catalyst distribution. Therefore, although catalysts that are zone-coated with precious metals, or any active sites, could prove better in terms of performance than homogeneously distributed active site catalysts, this improvement is only significant under certain reaction conditions. In a mixture of three reactants, CO, C3H6 and NO oxidation, it was found that a loading a larger amount of active sites in the catalyst middle, maintained better CO and C3H6 oxidation but not NO oxidation, which required the whole catalyst length. A faster light-off conversion was also related to higher amount of precious metal at the catalyst outlet. The CO conversion performance for a variety of distributed precious metal designs was evaluated as a function of exposure time to sulphur and the spatial accumulation profile of sulphur along the monolith length was predicted. The results illustrate that the sulphur accumulates near the catalyst inlet and decreases toward the outlet, resulting in shifting the reaction zones further toward the catalyst outlet. With sulfation, light-off temperatures (T50) increased and the time for back to front reaction propagation also increased. A back loaded catalyst resulted in the best light-off conversion compared to the other catalyst designs and a middle loaded catalyst maintained a higher overall conversion if sulphur poisoning takes place. These catalyst designs were also tested under thermal aging conditions by using a second order sintering model integrated with the CO oxidation reaction model. The spatial normalized dispersion profiles along the monolith showed that the catalyst outlet experienced significant damage relative to the inlet due to sintering. A front loaded catalyst design had the highest catalytic activity due its resistance to sintering.
157

Testing of an Axial Flow Moisture Separator in a Turbocharger System for Polymer Electrolyte Membrane Fuel Cells

Hays, Daniel George 20 May 2005 (has links)
Proton exchange membrane (PEM) fuel cells, with low operating temperatures and high power density, are a reasonable candidate for use in mobile power generation. One large drawback to their use is that their fuel reformer requires not only fuel but also water, thereby requiring two separate reservoirs to be available. PEM fuel cells exhaust enough water in their oxidant stream to potentially meet the needs of the fuel reformer. If this water could be recovered and routed to the fuel reformer it would markedly increase the portability of PEM fuel cells. The goal of this research was to test a previously designed axial flow moisture separator. The separator was employed in a test bed which utilized compressed, heated air mixed with steam to simulate the oxidant exhaust conditions of a 25 kW PEM fuel cell. The simulated exhaust was saturated with water. The mixture was expanded through the turbine side of an automotive turbocharger, which dropped the temperature and pressure of the mixture, causing water to condense, making it available for separation. The humid air mixture was passed over an axial flow centrifugal separator and water was removed from the flow. The separator was tested in a variety of conditions with and without passing chilled water through the separator. The axial separator was tested independently, with a flow straightener preceding it, and with a commercially available centrifugal moisture separator in series following it. It was shown that cooling makes a significant impact on the separation rate while adding a flow straightener does not. Separation efficiencies of 19% on average were experienced without cooling, while efficiencies of 50% were experienced with 3.1 kW of cooling. The separation efficiency of the two moisture separators combined was found to be 31.7% which is 165% that of the axial separator alone under uncooled conditions.
158

Spary Droplet Diameter and Flowfield Characteristic Analysis

Jheng, Qiao-Hong 06 August 2012 (has links)
The aim of this study was to observe the properties of a spray field, with micro particle image velocimetry (£gPIV) and holographic interferometric particle imaging (IPI) employed for the imaging and analysis of the global spray field. The experiment adopted different nozzle diameters (dj = 200 £gm, and dj = 500 £gm) and different values of gauge pressure (£GP = 300 kPa, £GP = 500 kPa, and £GP = 700 kPa) as the main parameters, and DI (distilled) Water as the working medium. The study was divided into two parts. The first part used the £gPIV system to observe the two-dimensional global visualization of spray field distribution and spray angle from each nozzle under different values of gauge pressure (£GP). The flow velocity distribution and variations (axial velocity, and impact velocity) of the global spray frame were also measured. As the nozzle diameter would determine the distribution of spray droplets, the second part adopted the IPI system to measure and explore the atomized droplet sizes from each nozzle under different values of gauge pressure (£GP), whereby drop size histograms were created through statistical analysis.
159

Effects of biaxial stretch on arteriolar function in vitro

Guo, Hong 02 June 2009 (has links)
Mounting evidence suggests that the normal biomechanical state of arteries may include a nearly equibiaxial intramural stress, and that arteries tend to undergo rapid and dramatic remodeling when perturbed from this normal state. Technical developments in the early 1980s and late 1990s enabled in vitro and ex vivo studies, respectively, of isolated perfused microvessels, and it is clear that they share many similarities in behavior with arteries. To date, however, there has been no systematic study of the effects of biaxial loading on the biomechanical behavior of arterioles. In this project, we describe a modification to a prior in vitro arteriole test system that allowed us to investigate the role of altered axial stretch on the passive, myogenic, and fully contracted biaxial behavior of isolated rat cremaster arterioles. We show that axial stretches from 85% to 110% of normal values induce modest changes in the measured circumferential and axial stress-stretch behavior and similarly in traditional measures of distensibility and myogenic index. Nevertheless, altered axial stretch has a dramatic affect on the biaxial state of stress and it appears that near equibiaxial stress occur at axial stretches larger than those used previously. Whereas this finding will not affect prior estimates of material and functional behavior, it may have important implications for the design of long-term ex vivo and in vivo studies wherein vessel growth and remodeling are critical.
160

Study of analysis and improvement methods on running breakdown for the table rollers of hot rolling strip cooling area.

Li, Hsin-pao 10 September 2006 (has links)
The rollers of run out table in Hot Strip Mill are operated with variable high rotational speed under a severe environment of high temperature and much cooling water around. And the table takes long space about 128 meters of length with over 330 rollers. The rollers of this area often break down, and it takes long to make urgent repair. So it costs about ten million NT dollars per year for mill shut-down. Although some improvements have been made before, the troubles still happens frequently. Then the temporary countermeasures of shortening the maintenance cycle and increasing the grease supply have been applied to prevent the break-down frequency from aggravation . But it wastes the cost and does not meet the environmental policy. This study analyzes many damage phenomena. Then it assumes that the 75% of roller running break-down is bearing damage resulting from bad lubrication condition and abnormal axial load. The cooling water which penetrates into bearing housing will result in grease emulsification and its consistency diluting. This certainly causes the bad lubrication condition and bearing rusting. In the meantime, if the floating function of roller bearing is inactive, the bearings will be operated under abnormal high axial load and without appropriate lubrication. Then the bearing will be damaged rapidly and must be repaired quickly. In order to improve bad lubrication and bearing rusting, this study modifies sealing arrangement and grease feeding circuit for bearing housing with the special functions of water obstruction, drainage and resistance to prevent water penetration. In addition, the overflow of grease will be collected to meet the environmental needs. Meanwhile, to look for better water resistance and mechanical stability for greasing, the study also discusses the relationship between consistency variation and thickening soap base after grease emulsification. During a three-month running of the new design , the water contents are stably under 1.5% which has greatly advanced. And the quantity of grease supply is under 10% of existing one. In order to improve the inactive floating function of roller bearings, this study not only analyzes the derivation of problems but also modifies the dimensional tolerance and adds cylindricity of geometric tolerance for the bore of bearing housing. This will ensure complete loose fit and shape accuracy to prevent the interference fit between the bore and bearing caused by manufacturing inaccuracy or other mistakes

Page generated in 0.0227 seconds