Spelling suggestions: "subject:"nonlocal operator"" "subject:"nonvocal operator""
1 |
Využití techniky C2H při implementaci algoritmů pro FPGA / IMPLEMENTING ALGORITHMS ON FPGA UTILIZING C2H TECHNIQUEOtisk, Libor January 2012 (has links)
This thesis deals with utilizing C2H technique for implementation algorithm on FPGA. Several structures of digital filters FIR and IIR are implemented within this work with usage of C2H. For such a comparison is in terms of FPGA resources utilized, the maximum frequency, latency, complexity of implementation and acceleration obtained to Nios II processor itself. Example for image processing using local operators implemented using C2h is also created to display the result on the LCD.
|
2 |
Local and disjointness structures of smooth Banach manifoldsWang, Ya-Shu 26 December 2009 (has links)
Peetre characterized local operators defined on the smooth section space over an open subset of an Euclidean space as ``linear differential operators'. We look for an extension to such maps of smooth vector sections of smooth Banach bundles. Since local
operators are special disjointness preserving operators, it leads to the study of the disjointness structure of smooth Banach manifolds.
In this thesis, we take an abstract approach to define the``smooth functions', via the so-called S-category.
Especially, it covers the standard classes C^{n} and local Lipschitz functions, where 0≤n≤¡Û. We will study
the structure of disjointness preserving linear maps between S-smooth functions defined on separable Banach manifolds. In particular, we will give an extension of Peetre's theorem to characterize disjointness preserving linear mappings between C^n
or local Lipschitz functions defined on locally compact metric spaces.
|
3 |
Um problema de extensão relacionado a raiz quadrada do Laplaciano com condição de fronteira de Neumann / An extension problem related to the square root of the Laplacian with Neumann boundary conditionAlves, Michele de Oliveira 15 December 2010 (has links)
Neste trabalho definimos o operador não local, raiz quadrada do Laplaciano com condição de fronteira de Neumann, através do método de extensão harmônica. O estudo foi feito com o auxílio das séries de Fourier em domínios limitados, como sendo o intervalo, o quadrado e a bola. Posteriormente, aplicamos nosso estudo, à problemas elípticos não lineares envolvendo o operador não local raiz quadrada do Laplaciano com condição de fronteira de Neumann. / In this work we define the non-local operator, square root of the Laplacian with Neumann boundary condition, using the method of harmonic extension. The study was done with the aid of Fourier series in bounded domains, as the interval, the square and the ball. Subsequently, we apply our study, the nonlinear elliptic problems involving non-local operator square root of the Laplacian with Neumann boundary condition.
|
4 |
A Characterization Theorem for Local Operators in Factorizing Scattering Models / Ein Theorem über die Charakterisierung lokaler Operatoren in Modellen mit faktorisierender StreumatrixCadamuro, Daniela 26 October 2012 (has links)
No description available.
|
5 |
Um problema de extensão relacionado a raiz quadrada do Laplaciano com condição de fronteira de Neumann / An extension problem related to the square root of the Laplacian with Neumann boundary conditionMichele de Oliveira Alves 15 December 2010 (has links)
Neste trabalho definimos o operador não local, raiz quadrada do Laplaciano com condição de fronteira de Neumann, através do método de extensão harmônica. O estudo foi feito com o auxílio das séries de Fourier em domínios limitados, como sendo o intervalo, o quadrado e a bola. Posteriormente, aplicamos nosso estudo, à problemas elípticos não lineares envolvendo o operador não local raiz quadrada do Laplaciano com condição de fronteira de Neumann. / In this work we define the non-local operator, square root of the Laplacian with Neumann boundary condition, using the method of harmonic extension. The study was done with the aid of Fourier series in bounded domains, as the interval, the square and the ball. Subsequently, we apply our study, the nonlinear elliptic problems involving non-local operator square root of the Laplacian with Neumann boundary condition.
|
Page generated in 0.0668 seconds