Spelling suggestions: "subject:"nonmalicious"" "subject:"ofmalicious""
81 |
The policing of road rage incidents in the Gauteng ProvinceMfusi, Boikhutso Florencia 12 1900 (has links)
This study followed a qualitative research approach, and semi-structured interviews regarding the subject matter were conducted with the knowledgeable and experienced respondents in the Gauteng traffic-related departments. A literature review was also conducted to provide a comprehensive understanding of the research problem in both local and international context.
The research stresses the fact that motorists are continuing to lose their lives on Gauteng province, as a result of violent traffic disputes, therefore people suffer financial, physical, psychological as well as social effects as a consequence of such actions. The findings revealed that all the traffic stakeholders are working cooperatively towards implementing the crime prevention strategic plans, but for policing road rage in particular there is no specific strategy in action. In addition, this study reveals that it is impossible for the traffic police to curb road rage incidents because the latter occur as a result of unpredictable human behavior. / Police Practice / M. Tech. (Policing)
|
82 |
Construction of Secure and Efficient Private Set Intersection ProtocolKumar, Vikas January 2013 (has links) (PDF)
Private set intersection(PSI) is a two party protocol where both parties possess a private set and at the end of the protocol, one party (client) learns the intersection while other party (server) learns nothing. Motivated by some interesting practical applications, several provably secure and efficient PSI protocols have appeared in the literature in recent past. Some of the proposed solutions are secure in the honest-but-curious (HbC) model while the others are secure in the (stronger) malicious model. Security in the latter is traditionally achieved by following the classical approach of attaching a zero knowledge proof of knowledge (ZKPoK) (and/or using the so-called cut-and-choose technique). These approaches prevent the parties from deviating from normal protocol execution, albeit with significant computational overhead and increased complexity in the security argument, which includes incase of ZKPoK, knowledge extraction through rewinding.
We critically investigate a subset of the existing protocols. Our study reveals some interesting points about the so-called provable security guarantee of some of the proposed solutions. Surprisingly, we point out some gaps in the security argument of several protocols. We also discuss an attack on a protocol when executed multiple times between the same client and server. The attack, in fact, indicates some limitation in the existing security definition of PSI. On the positive side, we show how to correct the security argument for the above mentioned protocols and show that in the HbC model the security can be based on some standard computational assumption like RSA and Gap Diffie-Hellman problem. For a protocol, we give improved version of that protocol and prove security in the HbC model under standard computational assumption.
For the malicious model, we construct two PSI protocols using deterministic blind signatures i.e., Boldyreva’s blind signature and Chaum’s blind signature, which do not involve ZKPoK or cut-and-choose technique. Chaum’s blind signature gives a new protocol in the RSA setting and Boldyreva’s blind signature gives protocol in gap Diffie-Hellman setting which is quite similar to an existing protocol but it is efficient and does not involve ZKPoK.
|
83 |
Malicious Intent Detection Framework for Social NetworksFausak, Andrew Raymond 05 1900 (has links)
Many, if not all people have online social accounts (OSAs) on an online community (OC) such as Facebook (Meta), Twitter (X), Instagram (Meta), Mastodon, Nostr. OCs enable quick and easy interaction with friends, family, and even online communities to share information about. There is also a dark side to Ocs, where users with malicious intent join OC platforms with the purpose of criminal activities such as spreading fake news/information, cyberbullying, propaganda, phishing, stealing, and unjust enrichment. These criminal activities are especially concerning when harming minors. Detection and mitigation are needed to protect and help OCs and stop these criminals from harming others. Many solutions exist; however, they are typically focused on a single category of malicious intent detection rather than an all-encompassing solution. To answer this challenge, we propose the first steps of a framework for analyzing and identifying malicious intent in OCs that we refer to as malicious mntent detection framework (MIDF). MIDF is an extensible proof-of-concept that uses machine learning techniques to enable detection and mitigation. The framework will first be used to detect malicious users using solely relationships and then can be leveraged to create a suite of malicious intent vector detection models, including phishing, propaganda, scams, cyberbullying, racism, spam, and bots for open-source online social networks, such as Mastodon, and Nostr.
|
84 |
Identifikace a charakterizace škodlivého chování v grafech chování / Identification and characterization of malicious behavior in behavioral graphsVarga, Adam January 2021 (has links)
Za posledné roky je zaznamenaný nárast prác zahrňujúcich komplexnú detekciu malvéru. Pre potreby zachytenia správania je často vhodné pouziť formát grafov. To je prípad antivírusového programu Avast, ktorého behaviorálny štít deteguje škodlivé správanie a ukladá ich vo forme grafov. Keďže sa jedná o proprietárne riešenie a Avast antivirus pracuje s vlastnou sadou charakterizovaného správania bolo nutné navrhnúť vlastnú metódu detekcie, ktorá bude postavená nad týmito grafmi správania. Táto práca analyzuje grafy správania škodlivého softvéru zachytené behavioralnym štítom antivírusového programu Avast pre proces hlbšej detekcie škodlivého softvéru. Detekcia škodlivého správania sa začína analýzou a abstrakciou vzorcov z grafu správania. Izolované vzory môžu efektívnejšie identifikovať dynamicky sa meniaci malware. Grafy správania sú uložené v databáze grafov Neo4j a každý deň sú zachytené tisíce z nich. Cieľom tejto práce bolo navrhnúť algoritmus na identifikáciu správania škodlivého softvéru s dôrazom na rýchlosť skenovania a jasnosť identifikovaných vzorcov správania. Identifikácia škodlivého správania spočíva v nájdení najdôležitejších vlastností natrénovaných klasifikátorov a následnej extrakcie podgrafu pozostávajúceho iba z týchto dôležitých vlastností uzlov a vzťahov medzi nimi. Následne je navrhnuté pravidlo pre hodnotenie extrahovaného podgrafu. Diplomová práca prebehla v spolupráci so spoločnosťou Avast Software s.r.o.
|
Page generated in 0.0311 seconds