• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3530
  • 2061
  • 826
  • 688
  • 559
  • 170
  • 125
  • 103
  • 82
  • 62
  • 59
  • 37
  • 37
  • 37
  • 37
  • Tagged with
  • 10308
  • 1567
  • 1380
  • 1260
  • 1169
  • 1112
  • 912
  • 825
  • 795
  • 751
  • 745
  • 693
  • 657
  • 616
  • 538
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
531

Thermal and Electrical Resistance of Metal Contacts

Ott, Roland E. 01 June 1967 (has links)
In engineering practice it is important to know which factors affect the thermal and electrical resistance of metal contacts. This thesis is to investigate some of these factors such as surface roughness and contact pressure. Thermal electrical contact resistance ratios for metal contacts were calculated from the experimental data. The technical literature was searched, and several papers were found in which either thermal or electrical contact resistance was studied separately. However, none of the papers recorded data for both thermal and electrical resistances for the same samples. The information found in these papers has been used as a background for understanding the nature of thermal and electrical contact resistance. Both of these contact resistances are primarily a function of the load on the contact and the condition of the surfaces. At low pressures only a small fraction of the total gross area of the contacts is in metal-to-metal contact. Increasing the load, flattens the “hills” and reduces both the thermal and electrical contact resistance. This phenomenon is called “spreading resistance” since the flow of heat or electrical current must spread out after they pass through the restricted areas that are actually in contact. Another type of thermal and electrical resistance, which is called “interface resistance", is caused by a film of foreign material such as an oxide, etc. on the surfaces of the contacting “hills”. If the space between the “hills” of a contact is filled with air, there is a heat flow by convection currents. The literature indicates this quantity of heat flow is approximately one thousandth of the total heat flow through metal contacts. Since the only electrical current conduction mechanism acting between areas not in actual metallic contact is that due to thermionic emission, the electrical resistance for these areas will be extremely high at room temperature for which thermionic emission is negligible. The experimental apparatus to measure both the thermal and electrical contact resistances consists mainly of a bellows-actuated press which is operated remotely under a vacuum bell. The press pressure loads the sample metal wafers. A thin film heat meter is used to indicate the quantity of heat flowing through the metal contacts. The temperature drop caused by the contacts is measured with thermocouples. The temperature difference and the quantity of heat flowing is used to calculate the thermal contact resistance. A strain gage on the bellows-press stem measures the loading on the contact surfaces. Electrical probes are used to measure the electrica1 resistance across the contact surfaces. The thermocouples and electrical resistance probes are permanently installed in the outer two smooth copper wafers. This makes it possible to quickly change to other sets of sample wafers of other metals and finishes. In order to use this permanent arrangement, it is necessary to finish two mating surfaces of the particular set of metal wafers to be tested, similar to the permanent smooth copper wafers so that these two extra mating contact resistances can be found and thus be subtracted from the overall contact resistance. The data indicates that the thermal-electrical contact resistance ratio can be changed by changing the load on the contacts. The heat meter had performed very well, and this new method of measuring heat flow will undoubtedly become a standard method of measuring heat flux.
532

Thermodynamic Analysis of the Application of Thermal Energy Storage to a Combined Heat and Power Plant

McDaniel, Benjamin 17 July 2015 (has links)
The main objective of this paper is to show the economic and environmental benefits that can be attained through the coupling of borehole thermal energy storage (BTES) and combined heat and power (CHP). The subject of this investigation is the University of Massachusetts CHP District Heating System. Energy prices are significantly higher during the winter months due to the limited supply of natural gas. This dearth not only increases operating costs but also emissions, due to the need to burn ultra low sulfur diesel (ULSD). The application of a TES system to a CHP plant allows the plant to deviate from the required thermal load in order to operate in a more economically and environmentally optimal manner. TES systems are charged by a heat input when there is excess or inexpensive energy, this heat is then stored and discharged when it is needed. The scope of this paper is to present a TRNSYS model of a BTES system that is designed using actual operational data from the campus CHP plant. The TRNSYS model predicts that a BTES efficiency of 88% is reached after 4 years of operation. It is concluded that the application of BTES to CHP enables greater flexibility in the operation of the CHP plant. Such flexibility can allow the system to produce more energy in low demand periods. This operational attribute leads to significantly reduced operating costs and emissions as it enables the replacement of ULSD or liquefied natural gas (LNG) with natural gas.
533

Determination of thermal neutron capture gamma yields.

Harper, Thomas Lawrence January 1969 (has links)
Massachusetts Institute of Technology. Dept. of Nuclear Engineering. Thesis. 1969. Ph.D. / Vita. / Bibliography: leaves 383-385. / A method of analysing Ge(Li) thermal neutron capture gamma spectra to obtain total gamma yields has been developed. Tie method determines both the yields from the well resolved gamma peaks in a spectrum as well as the gamma yields from the unresolved gamma lines which appear in the continuum portion of a spectrum. Accounting for the unresolved continuum enables a large fraction of total emitted energy to be observed, and values of 100% +/- 15% are obtained for the cases studied. The techniques used involve the determination of a peak response function suitable for the Ge(Li) pair spectrometer spectra being studied. The response function is used to strip off the effects of the peaks upon the background and unresolved data continuum. The continuum, which is due only to the unresolved lines, is broken into energy bins of 210 keV width and the gamma yield per bin is calculated. Results of the analysis and normalized yields are given for the rare earth samples of: Nd, Sm, Eu, Gd, and Er. The capture data were obtained by using the MITR 4th irradiation facility operated with a Ge(Li) pair spectrometer. / by Thomas L. Harper, Jr. / Ph.D.
534

Evaluating the Use of Drones to Estimate Deer Density and Count Wildlife Trails in Bath Nature Preserve, Ohio

Davis, Stuart Patrick 02 May 2021 (has links)
No description available.
535

Laboratory test procedures to predict the thermal behaviour of concrete.

Gibbon, George James January 1995 (has links)
A thesis submitted to the Faculty of Engineering, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Doctor of Philosophy / The cracking of mass and structural concrete due to thermal stress is a major problem in the concrete construction industry. Concrete will crack when the thermal stress exceeds tbe tensile strength of the concrete, Decisions on the type of concrete mix, cooling facilities and construction techniques to be used in the erection of a concrete structure can only be made if the thermal behaviour and strength of the concrete can be predicted during hydration. This thesis describes the development of a low cost, computer controlled, adiabatic calorimeter to determine tlte heat of hydration and a probe to determine the thermal conductivity or concrere samples. The main thrust of this thesis is the development of the thermal conductivity probe which, for the first time, can measure the thermal conductivity of concrete through all stages of hydration. A thermal model was also developed to verify the results, and the use of the calorimeter for temperature matched curing tests is also discussed. Results, obtained from the test procedures described, will provide far more accurate predictions of the temperatures in concrete structures than was possible in the past. / Andrew Chakane 2018
536

Polymer solution thermodynamics and gas-liquid chromatography

Su, Chung-Sin January 1976 (has links)
No description available.
537

The thermal conductivity of gases at high pressure.

Weininger, Joseph L. January 1949 (has links)
No description available.
538

Thermodynamics of r-mer fluids and their mixtures : zeroth and first approximations in the equation of state approach

Panayiotou, Constantinos G. January 1981 (has links)
No description available.
539

A sliding plate melt rheometer incorporating a shear stress transducer /

Giacomin, A. Jeffrey January 1987 (has links)
No description available.
540

Two-dimensional Mapping of Interface Thermal Resistance by Transient Thermal Impedance Measurement

Gao, Shan 27 June 2019 (has links)
Interconnects in power module result in thermal interfaces. The thermal interfaces degrade under thermal cycling, or chemical loading. Moreover, the reliability of thermal interfaces can be especially problematic when the interconnecting area is large, which increases its predisposition to generate defects (voids, delamination, or nonuniform quality) during processing. In order to improve the quality of the bonding process, as well as to be able to accurately assess interface reliability, it would be desirable to have a simple, reliable, and nondestructive measurement technique that would produce a 2-d map of the interface thermal resistance across a large bonded area. Based on the transient thermal method of JEDEC standard 51-14, we developed a measurement technique that involves moving a thermal sensor discretely across a large-area bonded substrate and acquiring the interface thermal resistance at each location. As detailed herein, the sensor was fabricated by packaging an IGBT bare die. An analytical thermal model was built to investigate the effects of thermal sensor packaging materials and structural parameters on the sensitivity of the measurement technique. Based on this model, we increased the detection sensitivity of the sensor by modifying the size of the sensor substrate, the material of the sensor substrate, the size of the IGBT bare die, the size of the heat sink, and the thermal resistance between sample and the heat sink. The prototype of the thermal sensor was fabricated by mounting Si IGBT on copper substrate, after which the Al wires were ultrasonic bonded to connect the terminals to the electrodes. The sensor was also well protected with a 3-d printed fixture. Then the edge effect was investigated, indicating the application of the thermal sensor is suitable for samples thinner than the value in TABLE 2 3. The working principle of the movable thermal sensor – Zth measurement and its structure function analysis – was then evaluated by sequence. The Zth measurement was evaluated by measuring the Zth change of devices induced by degradation in sintered silver die-attach layer during temperature cycling. At the end of the temperature cycling, failure modes of the sintered silver layer were investigated by scanning electron microscope (SEM) and X-ray scanning, to construct a thermal model for FEA simulation. The simulation results showed good agreement with the measured Zth result, which verified the accuracy of the test setup. The sensitivity of structure function analysis was then evaluated by measuring thermal resistance (Rth) of interface layers with different thermal properties. The structure function analysis approach successfully detected the Rth change in the thermal interface layer. The movable thermal sensor was then applied for 2d-mapping of the interface Rth of a large-area bonded substrate. Examining the test coupons bonded by sintered silver showed good and uniform bonding quality. The standard deviation of Rth is about 0.005 K/W, indicating the 95% confidence interval is about 0.01 K/W, which is commonly chosen as the error of measurement. The sensitivity of the movable thermal sensor was evaluated by detecting defects/heat channels of differing sizes. The 2-d mapping confirmed that the thermal sensor was able to detect defect/heat channel sizes larger than 1x1 mm2. The accuracy of the sensitivity was verified by FEA simulation. Moreover, the simulated results were consistent with the measured results, which indicates that the movable sensor is accurate for assessing interface thermal resistance. In summary, based on structure function analysis of the transient thermal impedance, the concept of a movable thermal sensor was proposed for two-dimensional mapping of interface thermal resistance. (1) Preliminary evaluation of this method indicated both transient thermal impedance and structure function analysis were sensitive enough to detect the thermal resistance change of thermal interface layers. With the help of transient thermal impedance measurement, we non-destructively tested the reliability of sintered silver die-attach layer bonded on either Si3N4 AMB or AlN DBA substrates. (2) An analytical thermal model was constructed to evaluate the design parameters on the sensitivity and resolution of the movable thermal sensor. A detailed design flow chart was provided in this thesis. To avoid edge effect, requirements on thickness and materials of test coupon also existed. Test coupon with smaller thermal conductivity and larger thickness had a more severe edge effect. (3) The application of the movable sensor was demonstrated by measuring the 2-d thermal resistance map of interface layers. The results indicated for bonded copper plates (k = 400 W/mK) with thickness of 2 mm, the sensor was able to detect defect/heat channel with size larger than 1x1 mm2. / Doctor of Philosophy / Interconnects in power module result in thermal interfaces. The thermal interfaces degrade during operation and their reliability can be especially problematic when the interconnecting area is large. In order to improve the quality of the bonding process, as well as to be able to accurately assess interface reliability, it would be desirable to have a simple, reliable, and nondestructive measurement technique that would produce a 2-d map of the interface thermal resistance across a large bonded area. Based on the transient thermal method of JEDEC standard 51-14, we developed a measurement technique that involves moving a thermal sensor discretely across a large-area bonded substrate and acquiring the interface thermal resistance at each location. As detailed herein, the sensor was fabricated by packaging an IGBT bare die, which allowed us to get a 2-d map of the interface thermal resistance. A thermal model was also constructed to guide the design of the sensor, to increase its performance. Moreover, the preliminary test of the test setup was conducted to prove its feasibility for the sensor. Eventually, the sensor’s performance and application was demonstrated by measuring the 2-d thermal resistance map of the bonded interfaces.

Page generated in 0.0497 seconds