Spelling suggestions: "subject:"nonthermal"" "subject:"nonisothermal""
681 |
Design of a Rooftop Photovoltaic Array for the George C. Gordon Library at Worcester Polytechnic Institute: Structural, Thermal, and Performance AnalysisMayer, Jamie Lynn 27 April 2010 (has links)
In 2009, WPI formed a Presidential Task Force to engage the WPI community in sustainability research, thought, and action. One of the Presidential Task Force's specific objectives is to improve campus environmental performance, which includes energy conservation. Several new buildings such as the Bartlett Center and East Hall have utilized new green building techniques and materials. Older buildings at WPI which were built before new green building techniques and materials were developed can be equipped with photovoltaic systems to reduce the environmental impact and increase clean energy use. This thesis presents a rooftop photovoltaic array design for the George C. Gordon library at WPI which is expected to produce over 27,000 kWh and offset over 56,000 lbs of carbon dioxide emissions annually. The materials science and engineering of the photovoltaic system components are an important part of the design process. Structural and thermal modeling of photovoltaic components during the initial phase of array design is critical to the success of the PV system and maximizing the energy from the system. This thesis presents how differences in photovoltaic materials and mounting systems result in changes in lifetime and reliability. Using common wind, ice, snow and hail loads for the Worcester, MA area ANSYSâ„¢ structural simulations show that an attached mounting system is more structurally stable than a ballasted system. Using local weather data and thermal cycling, ANSYSâ„¢ thermal simulations show that silicon PV modules outperform other technologies at lower temperatures while cadmium telluride PV modules outperform other technologies at higher temperatures. It is recommended that WPI install poly-silicon PV modules, such as Evergreen Solar PV modules, to maximize power output.
|
682 |
The identification of blunt force trauma in thermally altered remains using reconstruction and computed tomographyPendray, Jennifer 08 April 2016 (has links)
Various traumatic events such as automobile accidents, structure fires, or terrorist attacks result in traumatic and thermal injury. Fire is a destructive force that can alter or destroy evidence, and thermal alterations have negative effects on forensic and anthropological recovery and analysis. Blunt force trauma is particularly difficult to analyze because of the multiple ways in which this trauma appears on a body and the variety of objects that can impact and fracture a bone or the variety of ways a body can impact a blunt surface. As fire is a common way to cover up a crime and blunt force trauma is used as a means to kill or injure an individual, it is necessary to understand the differences between these two types of fractures that can present together on bone. The present study was performed to determine the amount of survivability of traumatic fracture patterns in remains that have been exposed to a burning event. The sample used for this investigation was composed of twenty limbs (forty long bones) from five full-grown, domestic, female sheep (Ovis aries) obtained from a farm in Connecticut. Thirty specimens were traumatized with the head of an Estwing ball peen hammer and ten were left as controls. After specimens were subjected to blunt force trauma, each was radiographed using Computed Tomography. They were then placed in a small structure, 8' x 8', that was constructed to simulate the conditions of a house fire.
Each post-burn bone was analyzed based on a number of characteristics. A trauma score of "1" no trauma, "2" ambiguous, and "3" traumatic fractures were given based on these observations. CT scans were examined after bone samples had been analyzed. Again, each specimen's CT scan was given a trauma score ("1" no trauma, "2" ambiguous, and "3" traumatic fractures). Results from the bone analysis on the 30 traumatized and burned specimens revealed that 15 did not have trauma, 2 were ambiguous (i.e., they may have trauma but traumatic characteristics were not distinct), and 13 presented with distinguishable traumatic injury. Comminuted was the most prominent type of fracture, and the next most common fracture was oblique. The majority of traumatic injury was found on the middle portion of the bone. CT examination showed that 12 specimens had suffered traumatic injury. The two analyses were compared and showed an agreement of 83.3% between the trauma scores. Results show that differentiation of traumatic and thermally induced fractures is possible using various fracture characteristics as well as taphonomic indicators to determine the sequence of events.
|
683 |
Thermoelastic stress and displacement in a thin rod due to an instantaneous heat sourceSiang, Hwang Hwei January 2011 (has links)
Digitized by Kansas Correctional Industries
|
684 |
Modification of heat transport by finitely-extensible polymers in boundary layer flow. / 有限伸展的聚合物對邊界層流中熱量傳輸的改變 / Modification of heat transport by finitely-extensible polymers in boundary layer flow. / You xian shen zhan de ju he wu dui bian jie ceng liu zhong re liang chuan shu de gai bianJanuary 2012 (has links)
長期以來,人們知道壁面受限湍流中的聚合物添加劑將顯著降低摩擦阻力,但是對聚合物在熱對流熱傳輸的影響還沒有太多研究。作為第一步,一項最近的工作[1]研究了在穩態邊界層流中熱量傳輸是怎樣被聚合物添加劑所影響的。在這項工作中[1],聚合物是用Oldroyd-B模型來描述,這個模型允許聚合物無限伸展而沒有限制。 / 在這篇論文中,我們用一個更加真實的聚合物模型來研究聚合物在穩態邊界層流中對熱量傳輸的影響。我們採用FENE-P(有限擴展非線性彈性Peterlin)模型,在這個模型中,聚合物僅可以被伸展到一個最大的長度。聚合物的有限伸展性由參數L來衡量,它是聚合物最大長度與平衡長度的比例。基於該模型,我們發現,相對於與聚合物溶劑在底板處粘度相同的牛頓流體,熱量傳輸可以被提高或者被降低,這取決於聚合物不同的L值。而在不同的L值下,流場中底板的阻力始終加強。在早期的工作中,可以用一個隨位置改變的有效粘度來理解聚合物的效果。我們探討了聚合物的有效粘度和流速場是怎樣被聚合物改變的,以理解這個問題。我們也對熱量傳輸與不同參數的依賴關係進行了研究,這些參數包括威森博格數,普朗特數和聚合物對零剪切下溶劑粘度作出的貢獻的比例。 / It has long been known that friction drag will be reduced signicantly due to polymer additives in turbulent wall-bounded flows, but the effect of polymers on heat transport in thermal convection has not been studied much. As a rst step, a recent work [1] has studied how heat transport in a steady-state boundary layer flow might be influenced by the addition of polymers. In this work [1], polymers are modeled by the Oldroyd-B model, in which they can be extended innitely without a limit. / In this thesis, we study the effect of polymers on the heat transport in steady-state boundary layer flow using a more realistic model of polymers. We apply the FENE-P (nite extensible nonlinear elastic-Peterlin) model, in which the polymers can only be extended up to a maximum length. The nite extensibility of the polymers is measured by the parameter L, which is the ratio of the maximum length to the equilibrium one. Based on the model, we nd that compared to a Newtonian flow with the same viscosity as that of the polymer solution at the plate, heat transport can be enhanced or reduced depending on L. The fraction drag is always enhanced by the polymers for all different L. In the earlier work, the effect of the polymers has been understood to produce an effective viscosity that is position-dependent. We have explored the effective viscosity of the polymers and how the velocity eld is modied by the polymers to understand our results. We have also studied how the results depend on the different parameters, including Weissenberg number, Prandtl number and the ratio of polymer contribution to the total zero-shear viscosity. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Wang, Yiqu = 有限伸展的聚合物對邊界層流中熱量傳輸的改變 / 王異曲. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2012. / Includes bibliographical references (leaves 68-69). / Abstracts also in Chinese. / Wang, Yiqu = You xian shen zhan de ju he wu dui bian jie ceng liu zhong re liang chuan shu de gai bian / Wang Yiqu. / Chapter 1 --- Introduction --- p.1 / Chapter 2 --- Prandtl-Blasius boundary layer flow --- p.7 / Chapter 3 --- Earlier work with Oldroyd-B polymers --- p.13 / Chapter 4 --- Theoretical formulation of the problem with polymers of finite extensibility --- p.20 / Chapter 4.1 --- Equations of motion --- p.20 / Chapter 4.2 --- Quantities of interest --- p.30 / Chapter 5 --- Checking validity of fixed angle approximation --- p.34 / Chapter 6 --- Results and Discussion --- p.42 / Chapter 6.1 --- Calculations --- p.42 / Chapter 6.2 --- The effect on heat transport --- p.45 / Chapter 6.3 --- The effect on drag --- p.48 / Chapter 6.4 --- The velocity field due to polymers --- p.49 / Chapter 6.5 --- Effective viscosity --- p.55 / Chapter 6.6 --- Dependence on Weissenberg number --- p.58 / Chapter 6.7 --- Dependence on Prandtl number --- p.61 / Chapter 6.8 --- Dependence on the ratio of polymer contribution to the total zero-shear viscosity --- p.64 / Chapter 7 --- Conclusion --- p.66
|
685 |
Experimental investigations of natural convection both in water and in mercury at extremely low Grashof numbersYou, Shuzhen January 2011 (has links)
Digitized by Kansas Correctional Industries
|
686 |
Automating the interpretation of thermal paints applied to gas turbine engines using Raman spectroscopy and machine learningRussell, Bryn January 2015 (has links)
Thermal paints are paints that exhibit a number of permanent colour changes at various temperatures. Rolls-Royce, a producer of gas turbine engines, use thermal paints to map the surface heat distribution over components in gas turbine engines. Engine components are coated with thermal paints and built into engines. The engine is run which heats the components, and hence the paints. This results in a colour distribution over the surface of the painted components. This project aims to generate predictions for the temperature that the thermal paints applied to gas turbine engines have reached during engine operation. Training models are built using Raman spectra taken from known temperature paint samples. Raman spectra from the painted engine components are tested in these training models to generate temperature predictions. The known temperature paint samples are heated in an oven, while the paints applied to engine component are heated in a gas turbine engine. This leads to differences in the spectra of the known temperature paints and the engine run paints, complicating the training model. This thesis presents a method for classifying the spectra from the known temperature paints samples and the unknown temperature engine samples in such a way that meaningful predictive models can be built.
|
687 |
Modelling and optimisation of energy systems with thermal energy storageRenaldi, Renaldi January 2018 (has links)
One of the main challenges in the implementation of renewable energy is the mismatch between supply and demand. Energy storage has been identified as one of the solutions to the mismatch problem. Among various storage technologies, thermal energy storage (TES) is foreseen to have a significant role to achieve a low carbon energy systems because of the large share of thermal energy demand and its relatively low cost. However, integrating TES into energy systems requires careful design and implementation since otherwise potential financial and environmental savings may not be achieved. Computational-based design tools are ubiquitous in the design process of modern energy systems and can be broadly categorised into two methodologies: optimisation and simulation. In both cases, designing an energy system with storage technology is significantly more complicated than those without, mainly due to the coupling of variables between time steps. This thesis is concerned with two facets of the application of TES in energy systems. First, the role of TES in improving the performance of renewable-based domestic heating systems. Second, the implementation of optimisation and simulation tools in the design of energy systems with integrated TES. They are addressed by examining two case studies that illustrate the spatial and temporal variance of energy systems: a single dwelling heat pump system with a hot water tank, and a solar district heating system with a borehole thermal energy storage. In the single dwelling case study, the technical and financial benefits of TES installation in a heat pump system are illustrated by the optimisation model. A simulation model which utilises the optimisation results is developed to assess the accuracy of the optimisation results and the potential interaction between the two methodologies. The solar district heating case study is utilised to highlight the potential of a time decomposition technique, the multiple time grids method, in reducing the computational time in the operational optimisation of the system. Furthermore, the case study is also employed to illustrate the potential of installing a similar system in the UK. The latter study was performed by developing a validated simulation model of the solar district heating system. The findings of the analyses reported in this thesis exemplify the potential of TES in a domestic and community-level heating system in the UK. They also provide a basis for recommendations on the improved use of optimisation and simulation tools in the design process of energy systems.
|
688 |
CNT-based thermal convective accelerometer. / 基于碳纳米管的热对流加速度传感器 / Ji yu tan na mi guan de re dui liu jia su du chuan gan qiJanuary 2009 (has links)
Zhang, Yu. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (leaves 55-60). / Abstract also in Chinese. / Abstract --- p.i / Acknowledgement --- p.iii / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Background --- p.1 / Chapter 1.2 --- Aim of Research --- p.2 / Chapter 1.3 --- Thesis Organization --- p.3 / Chapter 2 --- Literature Review --- p.4 / Chapter 2.1 --- Carbon Nanotubes in MEMS Devices --- p.4 / Chapter 2.1.1 --- CNT Integration and CNT sensors --- p.4 / Chapter 2.1.2 --- Prior Work in CMNS --- p.6 / Chapter 2.2 --- Overview of Motion Sensors --- p.7 / Chapter 2.2.1 --- Technology Overview --- p.7 / Chapter 2.2.2 --- Categories and Working Principles --- p.9 / Chapter 2.2.3 --- Application --- p.13 / Chapter 2.3 --- Thermal Convective Motion Sensors --- p.14 / Chapter 2.3.1 --- Micro Thermal Flow Sensors --- p.15 / Chapter 2.3.2 --- Research on Thermal Convective Motion Sensors --- p.17 / Chapter 2.3.3 --- Working Principle and Performances --- p.20 / Chapter 3 --- Design and Setup --- p.25 / Chapter 3.1 --- Methodology --- p.25 / Chapter 3.1.1 --- Research Method --- p.25 / Chapter 3.1.2 --- Critical Questions --- p.26 / Chapter 3.2 --- Sensor Chip Design and Fabrication --- p.27 / Chapter 3.2.1 --- Sensor Chip Mask Design --- p.27 / Chapter 3.2.2 --- Fabrication of Sensor Chip --- p.29 / Chapter 3.3 --- Sensor Prototyping --- p.30 / Chapter 3.3.1 --- CNT Deposition --- p.30 / Chapter 3.3.2 --- Sensor Building --- p.32 / Chapter 3.4 --- Setup of Experiment --- p.34 / Chapter 3.4.1 --- Source and Measure --- p.34 / Chapter 3.4.2 --- Acceleration Production --- p.35 / Chapter 4 --- Experiments and Results --- p.39 / Chapter 4.1 --- Hypotheses Verification --- p.39 / Chapter 4.1.1 --- Thermal Detection Using CNT --- p.39 / Chapter 4.1.2 --- Local Heating & Sensing --- p.40 / Chapter 4.2 --- Tilting Test --- p.42 / Chapter 4.2.1 --- Test Result --- p.42 / Chapter 4.2.2 --- Result Discussions --- p.43 / Chapter 4.3 --- Vibration Test --- p.45 / Chapter 4.3.1 --- Test Result --- p.45 / Chapter 4.3.2 --- Result Discussions --- p.52 / Chapter 5 --- Conclusion --- p.53 / Bibliography --- p.55
|
689 |
Micro bubble generation with micro watt power using carbon nanotube heating elements.January 2008 (has links)
Xiao, Peng. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references (leaves 76-78). / Abstracts in English and Chinese. / ABSTRACT --- p.i / 摘要 --- p.iii / ACKNOWLEDGEMENTS --- p.iv / TABLE OF CONTENTS --- p.vi / LIST OF FIGURES --- p.viii / LIST OF TABLES --- p.xi / Chapter CHAPTER ONE --- INTRODUCTION --- p.1 / Chapter 1.1 --- The Thermal Characteristic of the CNT Heater --- p.1 / Chapter 1.2 --- CNT-Based Micro Bubble Generation in a Static Droplet of Water --- p.2 / Chapter 1.3 --- CNT-Based Micro Bubble Transportation in a Micro Channel --- p.4 / Chapter 1.4 --- CNT-Based Micro Bubble Stimulation by Pulsed Current --- p.4 / Chapter CHAPTER TWO --- THE THERMAL CHARACTERISTICS OF CARBON NANOTUBES --- p.6 / Chapter 2.1 --- Temperature Coefficient of Resistance (TCR) of Our Typical CNT Heater --- p.7 / Chapter 2.2 --- The Humidity Coefficient of the Resistance (HCR) for Our Typical CNT Heater --- p.13 / Chapter 2.3 --- The Conclusion of the CNT Heater's Thermal and Humidity Characteristics --- p.18 / Chapter CHAPTER THREE --- MICRO BUBBLE GENERATION WITH MICRO WATT POWER USING CARBON NANOTUBE HEATING ELEMENTS --- p.19 / Chapter 3.1 --- Micro Electrode Fabrication --- p.19 / Chapter 3.1.1 --- Methods for Metal Electrode Fabrication --- p.20 / Chapter 3.1.2 --- Advantages and Disadvantages of Two Micro Fabrication Methods --- p.22 / Chapter 3.1.3 --- The Fabrication of Micro Electrodes for Our CNT Heater --- p.24 / Chapter 3.1.4 --- The Mask Design for Metal Electrode Fabrication --- p.26 / Chapter 3.2 --- The Micro Bubble Generation Experimental Procedure --- p.28 / Chapter 3.2.1 --- Initial Analysis of the Experimental Device --- p.28 / Chapter 3.3 --- Theoretical Analysis of Bubble Generation Temperature on the CNT Heater --- p.31 / Chapter 3.3 --- The Analysis of the Micro Bubble Generation Experimental Results --- p.35 / Chapter 3.4 --- The Conclusion of Bubble Generation in a Static Droplet of Water --- p.44 / Chapter CHAPTER FOUR --- CARBON NANOTUBE-BASED MICRO BUBBLE GENERATION IN A MICRO CHANNEL WITH DYNAMIC FLUID --- p.45 / Chapter 4.1 --- Micro Channel Fabrication --- p.46 / Chapter 4.1.1 --- Rapid Prototyping --- p.46 / Chapter 4.1.2 --- PDMS Moulding --- p.47 / Chapter 4.1.3 --- Irreversible Sealing --- p.49 / Chapter 4.1.4 --- Mask Design --- p.50 / Chapter 4.2 --- Experimental Setup --- p.51 / Chapter 4.3 --- Experimental Procedure --- p.53 / Chapter 4.4 --- Experimental Results --- p.55 / Chapter 4.5 --- Conclusion for Bubble Generation in the Micro Channel with Dynamic Fluid --- p.59 / Chapter CHAPTER FIVE --- CNT-BASED MICRO BUBBLE STIMULATION BY PULSED CURRENT --- p.60 / Chapter 5.1 --- Attempt to Control the Micro Bubble Diameter --- p.61 / Chapter 5.2 --- The Pulsed Current for Micro Bubble Departure in the Micro Channel --- p.63 / Chapter 5.2.1 --- Manual Pulsed Current Stimulation for Micro Bubble Departure in the Micro Channel --- p.64 / Chapter 5.2.2 --- The Pulsed Current Circuit for Micro Bubble Departure in the Micro Channel --- p.67 / Chapter CHAPTER SIX --- FUTURE WORK AND SUMMARY --- p.70 / Chapter 6.1 --- Future Work for Micro Bubble Generation Projects --- p.70 / Chapter 6.1.1 --- The CNT-Based Micro Bubble Generation with Various Values of Input Current --- p.70 / Chapter 6.1.2 --- The CNT Heater in the Zig-Zag Micro Channel --- p.71 / Chapter 6.1.3 --- Summary --- p.72 / APPENDIX A --- p.73 / Fabrication Process --- p.73 / Chapter I. --- Micro Electrode Fabrication --- p.73 / Chapter II. --- Micro Channel Fabrication --- p.75 / BIBLIOGRAPHY --- p.76
|
690 |
Matériaux composites à haute tenue thermique : influence de la micro-nanostructure sur les transferts moléculaires, électroniques et thermiques / Composit Materials with high thermal stability for nano-porous filter membranes : influence of micro-nanostructure on molecular, electronic and thermal transferAbidi, Sonia 18 June 2014 (has links)
Les matériaux de protection incendie sont largement utilisés pour assurer la sécurité des usagers des infrastructures. Les normes de protection incendie évoluant régulièrement, les matériaux doivent être de plus en plus performants. Ceux-ci sont généralement des mortiers constitués d’oxydes réfractaires et isolants. L’objectif de ce travail est de mettre au point un composite coupe-feu 4 h applicable par projection mais également de déterminer ses propriétés thermiques et mécaniques.Dans une première partie, cette étude reprend les différentes étapes de l’élaboration d’un matériau de protection incendie, après la présentation de la démarche qui a guidé l’élaboration de nos matériaux, nous nous sommes intéressés plus particulièrement à la composition chimique de la matrice ainsi que celle du ciment. Leurs propriétés thermiques et mécaniques ont été passées en revue.Les matières premières nécessaires à l’élaboration d’un mortier ont ensuite été sélectionnées. L’évolution, respectivement de la conductivité thermique, de la diffusivité, de la porosité, de la chaleur spécifique et des propriétés mécaniques des mortiers choisis en fonction de la nature et de la quantité de charges incorporées à la matrice a été étudiée. Une description des divers modèles analytiques et numériques permettant la représentation de la conductivité thermique et du module d’Young des matériaux a permis de développer un modèle capable de prédire le comportement thermique et mécanique des composites en fonction de la nature et de quantité de charges ajoutées.Dans une seconde partie, la cinétique de la réaction d’hydratation du plâtre afin de maîtriser les temps de prise et pour faciliter la production des projetés dans la chaîne industrielle a été étudiée. L’influence sur la cinétique d’hydratation, de la composition chimique du plâtre, de sa granulométrie et de l’ajout d’adjuvants couramment utilisés dans l’industrie plâtrière, a également été traitée.10A l’issue de cette étude, deux formulations de composites projetables ont été mises au point. / Fire protection materials are widely used to ensure the safety of users of the infrastructure. Standards of fire protection regularly operating, the materials must be more efficient. These are generally composed of refractory mortar and insulating oxides. The objective of this work is to develop a firewall composite 4 h applied by projecting but also to determine the thermal and mechanical properties.In the first part, this study describes the various stages of the development of a fire protection material, after the presentation of the approach that has guided the development of our materials, we are interested especially in the chemical composition of the matrix and that of the cement. Their thermal and mechanical properties have been reviewed.The raw materials for the preparation of mortar were selected. The evolution respectively of thermal conductivity, diffusivity, porosity, specific heat and the mechanical properties of mortars chosen according to the nature and amount of the fillers incorporated in the matrix has been studied. A description of the various analytical and numerical models for the representation of the thermal conductivity and Young's modulus of the materials led to the development of a model able to predict the thermal and mechanical behavior of composites based on the nature and amount of charges added.In a second part, the kinetics of the hydration reaction of gypsum to control setting time and to facilitate the production of the composite in the industrial chain was studied. The influence on the kinetics of hydration, of the chemical composition of the gypsum, particle size distribution and the addition of adjuvant commonly used in the plaster industry, has also been treated.At the end of this study, two formulations of composites applied by projection were developed.
|
Page generated in 0.1029 seconds