• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Defect Detection on Rail Base Area Using Infrared Thermography

Shrestha, Survesh Bahadur 01 September 2020 (has links)
This research aims to investigate the application of infrared thermography (IRT) as a method of nondestructive evaluation (NDE) for the detection of defects in the rail base area. Rails have to withstand harsh conditions during their application. Therefore, defects can develop in the base area of rails due to stresses such as bending, shear, contact, and thermal stresses, fatigue, and corrosion. Such defects can cause catastrophic failures in the rails, ultimately leading to train derailments. Rail base defects due to fatigue and corrosion are difficult to detect and currently there are no reliable or practical non-destructive evaluation (NDE) methods for finding these types of defects in the revenue service. Transportation Technology Center, Inc. (TTCI) had previously conducted a research on the capability of flash IRT to detect defects in rail base area based on simulation approach. The research covered in this thesis is the continuation of the same project.In this research, three rail samples were prepared with each containing a notched-edge, side-drilled holes (SDHs), and bottom-drilled holes (BDHs). Two steel sample blocks containing BDHs and SDHs of different sizes and depths were also prepared. Preliminary IRT trials were conducted on the steel samples to obtain an optimal IRT setup configuration. The initial inspections for one of the steel samples were outsourced to Thermal Wave Imaging (TWI) where they employed Thermographic Signal Reconstruction (TSR) technique to enhance the resulting images. Additional inspections of the steel samples were performed in the Southern Illinois University-Carbondale (SIUC) facility. In case of the rail samples, the SDHs and the notched-edge reflectors could not be detected in any of the experimental trials performed in this research. In addition, two more rail samples containing BDHs were prepared to investigate the detection capabilities for three different surface conditions: painted, unpainted, and rusted. The painted surface provided a best-case scenario for inspections while the other conditions offered further insight on correlating the application to industry-like cases.A 1300 W halogen lamp was employed as the heat source for providing continuous thermal excitation for various durations. Post-processing and analysis of the resulting thermal images was performed within the acquisition software using built-in analysis tools such as temperature probes, Region of Interest (ROI) based intensity profiles, and smoothing filters. The minimum defect diameter to depth (aspect) ratio detected in preliminary trials for the steel sample blocks were 1.0 at a diameter of 4.7625 mm (0.1875 in) and 1.5 at a diameter of 3.175 mm (0.125 in). For the inspection of painted rail sample, the longest exposure times (10 sec) provided the best detection capabilities in all sets of trials. The three holes having aspect ratio greater or equal to 1.0 were indicated in the thermal response of the painted and rusted samples while only the two holes having aspect ratio greater or equal to 1.5 were indicated in the unaltered sample. Indications of reflectors were identified through qualitative graphical analysis of pixel intensity distributions obtained along a bending line profile. The results obtained from the painted sample provided a baseline for analyzing the results from the unpainted and rusted rail samples. This provided an insight on the limitations and requirements for future development. The primary takeaway is the need for an optimized heat source. Poor contrast in the resulting image for the unpainted and rusted rail samples is experienced due to both noise and lack of penetration of the heat energy. This could have been due to decreased emissivity values. Moreover, the excitation method employed in this research does not comply with current industry standards for track clearances. Therefore, exploration of alternative excitation methods is recommended.
2

Assessment of Infrared Thermography for NDE of FRP Bridge Decks

Miceli, Marybeth 10 January 2001 (has links)
Statistics released in the fall 1989 showed that 238,357 (41%) of the nation's 577,710 bridges are either structurally deficient or functionally obsolete. New materials, such as fiber reinforced polymeric composites (FRP), are being suggested for use in bridge systems to solve some of the current problems. These materials are thought to be less affected by corrosive environmental conditions than conventional civil engineering materials. Therefore they may require less maintenance and provide longer life spans. More specifically, glass fiber reinforced vinyl ester matrix composites are considered possible replacements for deteriorating conventional bridge decks due to their durability, decreased weight, and relative affordability. In order to facilitate rapid acceptance of FRP structural components into the world of civil structural engineering, effective and efficient NDE techniques must be explored and documented in these situations. This thesis will discuss the use of Infrared Thermography (IRT) as a means of detecting debonds and voids caused by conditions encountered both in fabrication and in the field. As forced convective hot air is applied within the bridge deck, debonds between bridge deck components near the riding surface appear cold while imperfections near the bottom of the deck give rise to concentrations of heat. These variations in thermal propagation patterns are observed by the infrared camera and indicate possible structural deficiencies. Results of experimentation and thermal analyses from laboratory studies of a model bridge deck and some from in situ full-scale investigations are presented. / Master of Science
3

Évaluation et contrôle non destructifs des barreaux et plaques par génération acoustique induite par absorption de micro-ondes / Nondestructive evaluation and testing of bars and plates by means of acoustic waves generated by microwaves absorption

Mohamed elarif, Abderemane 22 March 2011 (has links)
De nombreuses études ont été menées jusqu’ici afin d’analyser l’apport de la technique de génération acoustique par micro-ondes dans le domaine de l’évaluation et du contrôle non destructifs des structures mécaniques. Le caractère entièrement sans contact de cette nouvelle technique en ferait un moyen pouvant être adopté pour générer aisément des ondes acoustiques dans les matériaux diélectriques absorbants. Ce travail porte d’abord sur l’étude des vibrations latérales engendrées dans les barreaux viscoélastiques placés dans un guide d’ondes électromagnétiques contenant une ouverture sur l’une des faces latérales et soumis à de brèves excitations de micro-ondes. Un modèle paramétrique prédit la forme de l’élévation de la température à l’intérieur de l’échantillon. Ses résultats soulignent que l’utilisation des guides partiellement ouverts provoque une distribution asymétrique de la température générant ainsi des modes de flexion. Par ailleurs, un modèle numérique tridimensionnel par éléments finis a permis de mettre en évidence l’existence d’autres modes liés aux déformations des sections-droites lorsqu’elles sont soumises à une brusque dilatation thermique. Ensuite, l’élaboration de méthodes directes pour compléter l’évaluation des propriétés viscoélastiques des mêmes barreaux placés dans les guides conventionnels est considérée. Différents modèles analytiques sont construits pour analyser l’effet du coefficient de Poisson sur le rapport des vibrations induites dans les directions latérale et longitudinale d’une part, et sur la dispersion des ondes acoustiques de type traction compression d’autre part. Un algorithme d’optimisation permettant d’estimer le coefficient de Poisson et la partie réelle de la lenteur à valeurs complexes par une méthode inverse est élaboré puis appliqué dans le cas concret de deux barreaux polymériques. Enfin, une étude analytique et numérique par éléments finis est menée afin d’analyser les vibrations générées sur un défaut circulaire (trou) contenu dans une plaque et chauffé localement par des micro-ondes. Deux approches acoustiques sont construites pour prédire la forme de la zone chauffée par une température uniforme ou gaussienne. Une relation directe entre la taille du défaut et les fréquences de certains pics qui apparaissent sur les spectres des vibrations de la plaque ont été mises en évidence. Celle-ci conviendrait à l’élaboration d’une méthode inverse permettant de dimensionner ces types de défauts. / Many studies in the field of both nondestructive evaluation and testing of mechanical structures have been conducted so far by analyzing the contribution of the microwaves induce acoustic technique. This new non-contact technique can be easily adopted to generate acoustic waves in non-conducting materials. This work begins with studying the lateral vibrations generated within viscoelastic bars hold inside grooved electromagnetic waveguides and subjected to short microwave irradiations. A parametrical model is established in order to predict the shape of the temperature rise within the sample. Results emphasize the fact that these types of waveguides generate a sudden asymmetric temperature rise, which produces some flexural modes. Besides, the development of a 3D numerical model allow the prediction of new vibration modes which are related to the deformations of the bar cross-sections during the sudden thermal heating. Then, direct methods are developed to complete the assessment of the viscoelastic properties of bars placed inside conventional electromagnetic waveguides. Different analytical models are proposed to study the effects of the Poisson ratio either on the ratio between lateral and longitudinal vibrations or on the dispersion of longitudinal waves. An optimization algorithm that allows the Poisson ratio and the real part of the complex slowness evaluation by means of dispersion curves is elaborate before being applied in the specific case of two polymeric bars. Finally, analytical and numerical finite element methods are conducted to analyze the acoustic waves generated by a circular defect (hole) contained in a plate and heated locally by microwaves. Two acoustic approaches are performed to predict the temperature rise form. Furthermore, a nondestructive testing method is highlighted by a direct relationship between the size of the defect and the frequencies of some peaks that appear on the velocity spectra of the plate. This method could be applied to set up an inverse procedure that can be used to size these kinds of defects.
4

Oblique angle pulse-echo ultrasound characterization of barely visible impact damage in polymer matrix composites

Welter, John T. January 2019 (has links)
No description available.

Page generated in 0.2277 seconds