Spelling suggestions: "subject:"equilibrium"" "subject:"disequilibrium""
51 |
Multiscale Computational Analysis and Modeling of Thermochemical Nonequilibrium FlowHan Luo (9168512) 27 July 2020 (has links)
Thermochemical nonequilibrium widely exists in supersonic combustion, cold plasma and hypersonic flight. The effect can influence heat transfer, surface ablation and aerodynamic loads. One distinct feature of it is the coupling between internal energy excitation and chemical reactions, particularly the vibration-dissociation coupling. The widely used models are empirical and calibrated based on limited experimental data. Advances in theories and computational power have made the first-principle calculation of thermal nonequilibrium reaction rates by methods like quasi-classical trajectory (QCT) almost a routine today. However, the approach is limited by the uncertainties and availability of potential energy surfaces. To the best of our knowledge, there is no study of thermal nonequilibrium transport properties with this approach. Most importantly, non-trivial effort is required to process the QCT data and implement it in flow simulation methods. In this context, the first part of this work establishes the approach to compute transport properties by the QCT method and studies the influence of thermal nonequilibrium on transport properties for N<sub>2</sub>-O molecules. The preponderance of the work is the second part, a comprehensive study of the development of a new thermal nonequilibrium reaction model based on reasonable assumptions and approximations. The new model is as convenient as empirical models. By validating against recent QCT data and experimental results, we found the new model can predict nonequilibrium characteristics of dissociation reactions with nearly the same accuracy as QCT calculations do. In general, the results show the potential of the new model to be used as the standard dissociation model for the simulation of thermochemical nonequilibrium flows.
|
52 |
PLASMA SHEATH CHARACTERIZATION FOR TELEMETRY IN HYPERSONIC FLIGHTStarkey, Ryan P., Lewis, Mark J., Jones, Charles H. 10 1900 (has links)
International Telemetering Conference Proceedings / October 20-23, 2003 / Riviera Hotel and Convention Center, Las Vegas, Nevada / During certain hypersonic flight regimes, shock heating of air creates a plasma sheath resulting in telemetry attenuation or blackout. The severity of the signal attenuation is dependent on vehicle configuration, flight trajectory, and transmission frequency. This phenomenon is investigated with a focus placed on the nonequilibrium plasma sheath properties (electron concentration, plasma frequency, collision frequency, and temperature) for a range of flight conditions and vehicle design considerations. Trajectory and transmission frequency requirements for air-breathing hypersonic vehicle design are then addressed, with comparisons made to both shuttle orbiter and RAM-C II reentry flights.
|
53 |
Development of a novel high-voltage arbitrary-waveform generatorSchwardt, Eckhard Detlef 03 1900 (has links)
Thesis (MSc)--University of Stellenbosch, 2007. / ENGLISH ABSTRACT: The dielectric-barrier discharge (DBD) is a source of non-equilibrium plasma that has
seen widespread industrial application in recent years. A high-voltage arbitrary-waveform
generator has been designed, built and characterised for the purpose of investigating the
influence that the applied voltage waveform has on the operation of a DBD.
The developed arbitrary-waveform generator is based on the principle of Fourier synthesis.
Up to twenty Fourier components are generated by means of a digital circuit
board, and then separately amplified by Class-AB amplifiers. Twenty step-up transformers
are subsequently used to transform the Fourier components to higher voltages; the
summation of the Fourier components are realised by the series connection of the transformer
secondary sides.
It was found that the digital generation of the Fourier components is very accurate
and provides for the easy configuration of arbitrary waveforms. Furthermore, the amplification
of the Fourier components by the Class-AB amplifiers introduces very little
distortion. The principle of adding the Fourier components via the step-up transformers
has been demonstrated; however, the large distributed capacitances of the transformers
adversely affect the operation of the Class-AB amplifiers, leading to the introduction of
distortion into the generated waveform. Furthermore, it was found that care had to be
taken to limit the introduction of EMI through the system’s large ground plane. / AFRIKAANSE OPSOMMING: Die di¨elektriese versperringsontlading (DVO) is ’n bron van nie-ekwilibrium plasma wat
in die afgelope jare wye toepassing in die nywerheid gevind het. ’n Arbitrˆere-golfvorm
hoogspanningskragbron is ontwerp, gebou en gekarakteriseer, met die doel om die invloed
wat die aangewende spanningsgolfvorm het op die werking van die DVO, te ondersoek.
Die ontwikkelde arbitrˆere golfvormgenerator is gebaseer op die beginsels van Fourier
samestelling. Tot twintig Fourier komponente word digitaal gegenereer, en dan afsonderlik
versterk deur Klas-AB versterkers. Twintig transformators word dan gebruik om die
Fourier komponente na ho¨er spannings te transformeer. Die sommasie van die Fourier
komponente geskied deur die serieskakeling van die transformators se sekondˆere windings.
Daar is bevind dat die digitale generasie van die Fourier komponente baie akkuraat is,
en dat die arbitrˆere golfvorms maklik verstel kan word. Verder versterk die Klas-AB versterkers
die Fourier komponente sonder enige noemenswaardige vervorming. Die gebruik
van die transformators om die Fourier komponente saam te voeg, is gedemonstreer. Die
groot verspreide kapasitansies van die transformators be¨ınvloed egter die funksioneering
van die Klas-AB versterkers, wat lei tot ’n vervorming van die uittree. Daar is ook bevind
dat die toetrede van EM versteurings deur die grondvlak van die sisteem problematies
kan wees.
|
54 |
Spatiotemporally Periodic Driven System with Long-Range InteractionsMyers, Owen Dale 01 January 2015 (has links)
It is well known that some driven systems undergo transitions when a system parameter is changed adiabatically around a critical value. This transition can be the result of a fundamental change in the structure of the phase space, called a bifurcation. Most of these transitions are well classified in the theory of bifurcations. Among the driven systems, spatiotemporally periodic (STP) potentials are noteworthy due to the intimate coupling between their time and spatial components. A paradigmatic example of such a system is the Kapitza pendulum, which is a pendulum with an oscillating suspension point. The Kapitza pendulum has the strange property that it will stand stably in the inverted position for certain driving frequencies and amplitudes. A particularly interesting and useful STP system is an array of parallel electrodes driven with an AC electrical potential such that adjacent electrodes are 180 degrees out of phase. Such an electrode array embedded in a surface is called an Electric Curtain (EC). As we will show, by using two ECs and a quadrupole trap it is posible to produce an electric potential simular in form to that of the Kapitza pendulum.
Here I will present the results of four related pieces of work, each focused on understanding the behaviors STP systems, long-range interacting particles, and long-range interacting particles in STP systems. I will begin with a discussion on the experimental results of the EC as applied to the cleaning of solar panels in extraterrestrial environments, and as a way to produce a novel one-dimensional multiparticle STP potential. Then I will present a numerical investigation and dynamical systems analysis of the dynamics that may be possible in an EC. Moving to a simpler model in order to explore the rudimentary physics of coulomb interactions in a STP potential, I will show that the tools of statistical mechanics may be important to the study of such systems to understand transitions that fall outside of bifurcation theory. Though the Coulomb and, similarly, gravitational interactions of particles are prevalent in nature, these long-range interactions are not well understood from a statistical mechanics perspective because they are not extensive or additive. Finally, I will present a simple model for understanding long-range interacting pendula, finding interesting non-equilibrium behavior of the pendula angles. Namely, that a quasistationary clustered state can exist when the angles are initially ordered by their index.
|
55 |
Estudo e validação da dosimetria em condições de não-referência / Estudy and validation of dosimetry in non-reference conditionsSabino, Talita 12 July 2011 (has links)
Com o avanço tecnológico dos equipamentos utilizados em radioterapia tornaram-se possíveis o uso de alguns campos de radiação nomeados como campos pequenos em algumas modalidades especiais de radioterapia. Com isso, a dosimetria dos feixes de radiação também teve de ser revista, pois com estes novos tamanhos de campos, não há condição de referência como aquela dita nos protocolos e diretrizes de dosimetria. Neste trabalho foi realizado um estudo completo sobre os campos pequenos, bem como sua dosimetria, mostrando o comportamento dos detectores nessa nova condição de dosimetria através de uma comparação entre os detectores utilizados e dados já publicados na literatura. Além disso, os dados obtidos experimentalmente puderam ser validados através de comparação com dados publicados por outros autores. Na caracterização do detector de diamante o mesmo apresentou-se apropriado em todos os parâmetros para medidas com campos pequenos. Na análise do fator de qualidade Q os resultados experimentais obtidos nesta investigação mostraram diferenças percentuais de 1,8%; 4,0% e 4,9% para câmara do tipo CC01, CC13 e diodo estereotáxico respectivamente. Na avaliação de PDP e TMR foi possível observar a dificuldade nas medições com campos pequenos bem como na comparação de diferentes detectores, para PDP a maior diferença foi de 2,6% e para TMR 2,7%. / With the technological equipment used in radiotherapy became possible use of some radiation fields named small fields in some special forms of radiotherapy. Thus, the dosimetry of radiation fields also had to be revised, as with these new sizes of fields, there is no reference condition such as that expressed in dosimetry protocols and guidelines. This work represents a complete study of small fields and its dosimetry, showing the behavior of the detectors in this new condition of dosimetry through a comparison between the detectors used and data already published. Moreover, the experimental data can be validated by comparison with data published by others authors. In the characterization of the same diamond detector has been considered appropriate in all parameters measured with small fields. The analysis of the beam quality factor (Q) the experimental results obtained in this study showed differences in percentages of 1.8%, 4.0% and 4.9% for chamber-type CC01, CC13 and stereotactic diode respectively. In evaluating PDP and TMR was possible to observe the difficulty in measurements with small fields and the comparison of different detectors, the biggest difference for PDP was 2.6% and 2.7% for TMR.
|
56 |
Dinâmica estocástica de populações biológicas / Stochastic Dynamics of Biological PoupulationsHirata, Flávia Mayumi Ruziska 15 August 2017 (has links)
Nesta tese investigamos modelos irreversíveis dentro do contexto da mecânica estatística de não-equilíbrio motivados por alguns problemas de dinâmicas de populações biológicas. Procuramos identificar a existência de transições de fase e as classes de universalidade às quais os modelos pertencem. Além disso, buscamos modelos que capturem as principais características dos sistemas biológicos que procuramos descrever. Encontramos a solução analítica exata para o modelo suscetível-infectado-recuperado (SIR) em uma rede unidimensional. Investigamos o modelo suscetível-infectado-recuperado com infecção recorrente. Mostramos que o modelo pertence à classe de universalidade da percolação isotrópica, salvo pelos parâmetros em que se torna o processo de contato. Obtivemos também a linha de transição entre as fases em que há e não há propagação da epidemia, através de aproximações de campo médio e por simulações de Monte Carlo do modelo na rede quadrada. Investigamos uma dinâmica para duas espécies biológicas e dois nichos ecológicos; para tanto introduzimos um modelo estocástico irreversível de quatro estados. Concluímos que o modelo oferece uma descrição para as oscilações temporais das populações das espécies e para a alternância de dominância entre estas. Para chegar a esta conclusão, utilizamos simulações de Monte Carlo do modelo na rede quadrada, aproximações de campo médio e a abordagem da equação mestra de nascimento e morte, a qual, para grandes populações, pode ser aproximada por uma equação de Fokker-Planck que é associada a um conjunto de equações de Langevin. Por fim, usando simulações de Monte Carlo, analisamos a dinâmica de duas espécies biológicas e dois nichos ecológicos incluindo difusão. Novamente verificamos que o modelo gera cenários com oscilações temporais das populações das espécies e alternância de dominância entre estas. Ademais, concluímos que modelo pertence à classe de universalidade da percolação direcionada e obtivemos o diagrama de fase. / In this thesis we investigate irreversible models within the context of nonequilibrium statistical mechanics motivated by some problems of biological population dynamics. We look for dentifying the existence of phase transition and the universality classes to which the models belong. In addition to that, we look for models that capture the main characteristics of the biological systems which we are interested in describing. We found the exact analytic solution of the susceptible-infected-recovered (SIR) model on one-dimensional lattice. We investigated the susceptible-infected-recovered model with recurrent infection. We showed that the model belongs to the isotropic percolation universality class, except for the parameters that make the model become a contact process. We obtained the transition line between the phases in which there is propagation of the epidemic and in which there is not, by means of mean-field approximations and Monte Carlo simulations on a square lattice. Furthermore, we investigated a dynamic for two biological species and ecological niches; for this purpose we introduced an irreversible stochastic model with four states. We conclude that the modoffers a description of time oscillations of the species populations and of the alternating dominance between them. To achieve this conclusion we used Monte Carlo simulations of this model on a square lattice, mean-field approximation, and the birth and death master equation approach, which for large populations can be approximated by a Fokker-Planck equation that is associated to a set of Langevin equations. Finally, using Monte Carlo simulations, we analyzed a dynamic for two biological species and ecological niches including diffusion. Again, we verified that the model generates scenarios with time oscillations of the species populations and with alternating dominance between them. Also, we conclude that the model belongs to the directed percolation universality class and we found the phase diagram.
|
57 |
Numerical Simulation of a Flowfield Around a Hypersonic Missile with Lateral JetsUnknown Date (has links)
This work uses computational fluid dynamics to study the flowfield around a
hypersonic missile with two lateral jets to provide control in place of control surfaces.
The jets exhaust an H2-O2 mixture at Mach number of 2.9 with a jet pressure ratio of
roughly 10,500. The jets are staggered axially and circumferentially in such a way to
produce pitch and yaw. The flowfield of such a jet configuration is characterized at
several angles of attack and the corresponding force coefficients and amplification factors
are provided. The freestream air and H2-O2 plume is treated as inert for the majority of
the calculations. Special cases are treated with finite rate chemical kinetics and compared
to the inert flowfield to ascertain the effects that chemical reactions have on the force
coefficients. It was found that the flowfield was only slightly altered from the familiar
one jet flowfield when the second jet is active. The flow topology and vortex structures
tend to shift towards the second jet but the overall structure remains the same. The
normal force amplification factors are close to unity over the range of angle of attack due to the thrust being so high with the two jet configuration having a lower amplification
factor compared to firing a single jet. Treating the flowfield as chemically reacting did
not affect the force values much: the difference being 0.3% for an angle of attack of 0°. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2017. / FAU Electronic Theses and Dissertations Collection
|
58 |
Estudo e validação da dosimetria em condições de não-referência / Estudy and validation of dosimetry in non-reference conditionsTalita Sabino 12 July 2011 (has links)
Com o avanço tecnológico dos equipamentos utilizados em radioterapia tornaram-se possíveis o uso de alguns campos de radiação nomeados como campos pequenos em algumas modalidades especiais de radioterapia. Com isso, a dosimetria dos feixes de radiação também teve de ser revista, pois com estes novos tamanhos de campos, não há condição de referência como aquela dita nos protocolos e diretrizes de dosimetria. Neste trabalho foi realizado um estudo completo sobre os campos pequenos, bem como sua dosimetria, mostrando o comportamento dos detectores nessa nova condição de dosimetria através de uma comparação entre os detectores utilizados e dados já publicados na literatura. Além disso, os dados obtidos experimentalmente puderam ser validados através de comparação com dados publicados por outros autores. Na caracterização do detector de diamante o mesmo apresentou-se apropriado em todos os parâmetros para medidas com campos pequenos. Na análise do fator de qualidade Q os resultados experimentais obtidos nesta investigação mostraram diferenças percentuais de 1,8%; 4,0% e 4,9% para câmara do tipo CC01, CC13 e diodo estereotáxico respectivamente. Na avaliação de PDP e TMR foi possível observar a dificuldade nas medições com campos pequenos bem como na comparação de diferentes detectores, para PDP a maior diferença foi de 2,6% e para TMR 2,7%. / With the technological equipment used in radiotherapy became possible use of some radiation fields named small fields in some special forms of radiotherapy. Thus, the dosimetry of radiation fields also had to be revised, as with these new sizes of fields, there is no reference condition such as that expressed in dosimetry protocols and guidelines. This work represents a complete study of small fields and its dosimetry, showing the behavior of the detectors in this new condition of dosimetry through a comparison between the detectors used and data already published. Moreover, the experimental data can be validated by comparison with data published by others authors. In the characterization of the same diamond detector has been considered appropriate in all parameters measured with small fields. The analysis of the beam quality factor (Q) the experimental results obtained in this study showed differences in percentages of 1.8%, 4.0% and 4.9% for chamber-type CC01, CC13 and stereotactic diode respectively. In evaluating PDP and TMR was possible to observe the difficulty in measurements with small fields and the comparison of different detectors, the biggest difference for PDP was 2.6% and 2.7% for TMR.
|
59 |
Network topology and community function in spatial microbial communitiesMenon, Rajita 15 November 2018 (has links)
Complex communities of microbes act collectively to regulate human health, provide sources of clean energy, and ripen aromatic cheese. The efficient functioning of these communities can be directly related to competitive and cooperative interactions between
species. Physical constraints and local environment affect the stability of these interactions. Here we explore the role of spatial habitat and interaction networks in microbial ecology and human disease.
In the first part of the dissertation, we model mutualism to understand how spatial microbial communities survive number fluctuations in physical habitats. We explicitly account for the production, consumption, and diffusion of public goods in a two-species microbial community. We show that increased sharing of nutrients breaks down coexistence, and that species may benefit from making slower-diffusing nutrients. In multi-species communities, indirect and higher order interactions may affect community function. We find that the requirement for spatial proximity severely restricts the network of possible microbial interactions. While cooperation between two
species is stable, higher-order mutualism requiring three or more species succumbs easily to number fluctuations. Additional cyclic or reciprocal interactions between pairs can stabilize multi-species communities.
Inter-species interactions also affect human health via the human microbiome: microbial communities in the gut, lungs and skin. In the second part of the dissertation, we use machine learning and statistics to establish links between microbiota abundance and composition, and the incidence of chronic diseases. We study the gut fungal profile to probe the effects of diet and fungal dysbiosis in a cohort of Saudi children with Crohn's disease.
While statistical microbiome studies established that each disease phenotype is associated with a distinct state of intestinal dysbiosis, they often produced conflicting results and identified a very large number of microbes associated with disease. We show that a handful of taxa could drive the dynamics of ecosystem-level abundance changes due to strong inter-species interactions. Using maximum entropy methods, we propose a simple statistical approach (Direct Association Analysis or DAA) to account for interspecific interactions. When applied to the largest dataset on IBD, DAA detects a small subset of associations directly linked to the disease, avoids p-value
inflation and identifies most predictive features of the microbiome.
|
60 |
An Object Oriented and High Performance Platform for Aerothermodynamics SimulationLani, Andrea 04 December 2008 (has links)
This thesis presents the author's contribution
to the design and implementation of COOLFluiD,
an object oriented software platform for
the high performance simulation of multi-physics phenomena on unstructured grids. In this context, the final goal has been to provide a reliable tool for handling high speed aerothermodynamic
applications. To this end, we introduce a number of design techniques that have been developed in order to provide the framework with flexibility
and reusability, allowing developers to easily integrate new functionalities such as arbitrary mesh-based data structures, numerical algorithms (space discretizations, time stepping schemes, linear system solvers, ...),and physical models.
Furthermore, we describe the parallel algorithms
that we have implemented in order to efficiently
read/write generic computational meshes involving
millions of degrees of freedom and partition them
in a scalable way: benchmarks on HPC clusters with
up to 512 processors show their effective suitability for large scale computing.
Several systems of partial differential equations,
characterizing flows in conditions of thermal and
chemical equilibrium (with fixed and variable elemental fractions)and, particularly, nonequilibrium (multi-temperature models)
have been integrated in the framework.
In order to simulate such flows, we have developed
two state-of-the-art flow solvers:
1- a parallel implicit 2D/3D steady and unsteady cell-centered Finite Volume (FV) solver for arbitrary systems of PDE's on hybrid unstructured meshes;
2- a parallel implicit 2D/3D steady vertex-centered Residual Distribution (RD) solver for arbitrary systems of PDE's on meshes with simplex elements (triangles and tetrahedra).
The FV~code has been extended to handle all
the available physical models, in regimes ranging from incompressible to hypersonic.
As far as the RD code is concerned, the strictly conservative variant of the RD method, denominated CRD, has been applied for the first time in literature to solve high speed viscous flows in thermochemical nonequilibrium, yielding some preliminary outstanding results on a challenging double cone flow simulation.
All the developments have been validated on real-life testcases of current interest in the aerospace community. A quantitative comparison with experimental measurements and/or literature has been performed whenever possible.
|
Page generated in 0.0629 seconds