Spelling suggestions: "subject:"equilibrium"" "subject:"disequilibrium""
81 |
INVESTIGATION OF AEROTHERMODYNAMIC AND CHEMICAL KINETIC MODELS FOR HIGH-SPEED NONEQUILIBRIUM FLOWSNirajan Adhikari (11794592) 20 December 2021 (has links)
<div>High speed flow problems of practical interest require a solution of nonequilibrium aerothermochemistry to accurately predict important flow phenomena including surface heat transfer and stresses. As a majority of these flow problems are in the continuum regime, Computational Fluid Dynamics (CFD) is a useful tool for flow modeling. This work presents the development of a nonequilibrium add-on solver to ANSYS Fluent utilizing user-defined-functions to model salient aspects of nonequilibrium flow in air. The developed solver was verified for several benchmark nonequilibrium flow problems and compared with the available experimental data and other nonequilibrium flow simulations. <br></div><div><br></div><div>The rate of dissociation behind a strong shock in thermochemical nonequilibrium depends on the vibrational excitation of molecules. The Macheret-Fridman (MF) classical impulsive model provides analytical expressions for nonequilibrium dissociation rates. The original form of the model was limited to the dissociation of homonuclear molecules. In this work, a general form of the MF model has been derived and present macroscopic rates applicable for modeling dissociation in CFD. Additionally, some improvements to the prediction of mean energy removed in dissociation in the MF-CFD model has been proposed based on the comparisons with available QCT data. In general, the results from the MF-CFD model upon investigating numerous nonequilibrium flows are promising and the model shows a possibility of becoming the standard tool for investigating nonequilibrium flows in CFD.</div><div><br></div><div>The aerodynamic deorbit experiment (ADE) CubeSat has dragsail to accompany accelerated deorbiting of a CubeSat post-mission. A good estimation of the aerothermal load on a reentry CubeSat is paramount to ensure a predictable reentry. This study investigates the aerothermal load on an ADE CubeSat using the direct simulation Monte Carlo (DSMC) methods and Navier-Stokes-Fourier continuum based methods with slip boundary conditions. The aerothermal load on an ADE CubeSat at 90 km altitude from the DSMC and continuum methods were consistent with each other. The continuum breakdown at a higher altitude of 95 km resulted in a strong disagreement between the continuum and DSMC solutions. Overall, the continuum methods could offer a considerable computational cost saving to the DSMC methods in predicting aerothermal load on an ADE CubeSat at low altitudes.<br> </div>
|
82 |
Four out-of-equilibrium lecturesFalasco, Gianmaria 01 August 2017 (has links)
A collection of published papers on the subject of classical nonequilibrium statistical mechanics. Mainly stochastic systems are considered, with special regard to applications in soft matter physics
|
83 |
Some dynamical aspects of generic disordered systemsLezama Mergold Love, Talía 21 January 2020 (has links)
In this thesis, we focus attention on the effects of disorder in closed interacting quantum systems that give rise to a many-body localization (MBL) transition between an ergodic phase and a many-body localized phase. This transition is not a conventional one, since it takes place at any finite energy density and can neither be described by thermodynamics nor conventional statistical mechanics. We explain why systems experiencing such an MBL transition can be regarded as generic in many ways, we do so by discussing many of their spectral properties and by giving a detailed account of their manifestation in the nonequilibrium dynamics and long-time behavior. Surprisingly, a wide variety of MBL systems consistently reflect strikingly similar characteristic effects in each side of the MBL transition. This is backed by myriads of numerical and experimental observations which in turn can be partially explained by theories developed in the past decade. However, some mechanisms behind the ergodic side of the MBL transition and the nature of the MBL transition itself remain elusive. These, as well as the lack of an accurate description of the nonergodic character of the steady states of such systems, have been some of the issues for active research and speculation by scholars that need to be timely addressed.
In the following, we describe our modest contributions at bridging the gap of understanding of some of the issues exposed above.
On the one hand, reduced density matrices are central objects for the description of the relaxation of local observables in closed quantum many-body systems, and on the other, quench protocols are experimentally relevant procedures. In the first part of this thesis we study the long-time behavior of the one-particle density matrix (OPDM) occupation spectrum after a quench. It was shown that, in the many-body localized phase (which can be understood in terms of localized quasiparticles), the OPDM occupation spectrum in eigenstates shows a zero-temperature Fermi liquid-like discontinuity at any finite energy density. In this thesis we show that in the steady state reached at long times after a global quench from a perfect density-wave state, the discontinuity in the OPDM occupation spectrum is absent, reminiscent of a Fermi liquid at a finite temperature, while the full occupation function remains strongly nonthermal. We discuss how one can understand this as a consequence of the local structure of the density-wave state and the resulting partial occupation of quasiparticles. We further show how these partial occupations can be controlled by tuning the structure of initial state and described by an effective temperature.
Another part of this thesis was devoted to the study of dynamics on the ergodic side of the transition in periodically driven systems in the absence of global conservation laws. Most numerical studies in this context were done in models with conserved quantities (e.g., energy and/or particle number) which could account for the reduction of the overall complexity of the problem, while in this thesis, we use a numerical technique based on the fast Walsh-Hadamard transform that allows us to perform an exact time evolution for large systems and long times. As in models with conserved quantities, we observe a slowing down of the dynamics as the transition into the many-body localized phase is approached. This is reflected in anomalous behavior of the energy absorption of the system, as well as consistent with a subballistic spread of entanglement and a stretched-exponential decay
of an autocorrelation function, with their associated exponents reflecting slow dynamics near the transition for a
fixed system size. However, with access to larger system sizes, we observe a clear flow of the exponents towards
faster dynamics and cannot rule out that the slow dynamics is a finite-size effect. Furthermore, we observe examples of nonmonotonic dependence of the exponents with time, with the dynamics initially slowing down but accelerating again at larger times, which could be consistent with the slow dynamics being a crossover phenomenon with a localized critical point. In addition, we observe no difference between the typical and average value of the autocorrelation function and therefore our results are inconsistent with the phenomenological explanation of the anomalous behavior based on Griffiths effects.
In the last part of this thesis, we study dynamics in the ergodic phase relating to two main quantum information measures: One is the entanglement entropy, which is an intrinsic property of the wave function and generated by the time evolution operator, while the other is the operator entanglement entropy of the time evolution operator, which quantifies the complexity of the latter. It is known that generic quantum many-body systems typically show a linear growth of the entanglement entropy growth after a quench from a product state. In this thesis we show that there is a robust correspondence between the operator entanglement entropy of the time evolution operator and the entanglement entropy growth of typical product states, whereas special product states, e.g., $\sigma_z$ basis states, may exhibit faster entanglement production. We base our analysis on numerical simulations of a static and a periodically driven quantum spin chain in the presence of a disordered magnetic field, showing that both the wave function and operator entanglement entropies exhibit a power-law growth with the same disorder-dependent exponent. With this, we clarify the discrepancy between the exponents observed in previous results. Our results provide further evidence for slow information spreading on the ergodic side of the many-body localization transition in the absence of conservation laws. / In dieser Dissertation setzen wir uns mit dem Effekt von Unordnung auf geschlossene wechselwirkende Quantensysteme auseinander. Unordnung kann einen Übergang von einer ergodischen in eine lokalisierte Phase induzieren, eine sogenannte Vielteilchenlokalisierung oder Many body localization (MBL). Dieser Phasenübergang ist alles andere als konventionell: Er kann weder durch Thermodynamik noch durch klassische statistische Mechanik beschrieben werden. Wir erklären, warum Systeme, die solch einen MBL Übergang aufweisen, in vielerlei Hinsicht als generisch angesehen werden können. Dazu diskutieren wir die spektralen Eigenschaften, die Nichtgleichgewichtsdynamik und das Langzeitverhalten. Erstaunlicherweise weist eine große Vielfalt verschiedener MBL Systeme auf beiden Seiten des MBL Übergangs mit großer Konsistenz ähnliche Charakteristiken auf. Dies wird durch unzählige numerische und experimentelle Beobachtungen unterstützt, die wiederum zumindest teilweise durch theoretische Arbeiten aus dem letzten Jahrzehnt erklärt werden können. Trotzdem bleiben manche Mechanismen auf der ergodischen Seite des MBL Übergangs und die Art des MBL Übergangs weiterhin im Verborgenen. Zusammen mit der fehlenden akkuraten Beschreibung des nicht-ergodischen Charakters der stationären Zustände dieser Systeme sind diese Probleme im derzeitigen Fokus der Forschung, wobei es eine Vielzahl fundierter Vermutungen gibt, die diese Phänomene erklären. Im Folgenden beschreiben wir unseren Beitrag wie diese oben gelisteten Probleme überwunden werden können.
Reduzierte Dichteoperatoren sind zentrale Objekte, um die Relaxation von lokalen Observablen in geschlossenen Quantenvielkörpersystemen zu beschreiben und sogenannte Quenches, also die plötzliche Änderung einiger systemrelevanter Parameter, ähnlich wie beim Abschrecken mit Wasser oder Luft, sind experimentell relevante Vorgänge. Im ersten Teil dieser Arbeit untersuchen wir das Langzeitverhalten des Besetzungsspektrums des Einteilchendichteoperators (one-particle density matrix, OPDM) nach solch einem Quench. Wie zuvor gezeigt wurde, weist das OPDM Besetzungsspektrum in der MBL Phase (die im Sinne von lokalisierten Quasiteilchen verstanden werden kann) für alle endlichen Energiedichten eine Diskontinuität auf, ähnlich wie in Fermi-Flüssigkeiten. In dieser Arbeit zeigen wir, dass diese Diskontinuität in stationären Zuständen, die von perfekten Dichtewellen ausgehend nach langer Zeit nach einem globalen Quench erreicht werden, abwesend ist, ähnlich wie in einer Fermi-Flüssigkeit bei einer endlichen Temperatur, während die gesamte Besetzungsfunktion stark nicht-thermal bleibt. Wir diskutieren, wie man dies als Konsequenz der lokalen Struktur des Dichtewellenzustands und der daraus folgenden teilweisen Besetzung der Quasiteilchen verstehen kann. Wir zeigen außerdem, wie die teilweise Besetzung durch Änderung der Struktur des Ausgangszustands kontrolliert und durch eine effektive Temperatur beschrieben werden kann.
Im nächsten Teil dieser Arbeit untersuchen wir die Dynamik der ergodischen Seite des MBL Übergangs in periodisch getriebenen Systemen ohne globale Erhaltungsgrößen. Die meisten bisherigen in diesem Zusammenhang vorgenommenen numerischen Untersuchungen wurden in Modellen mit Erhaltungsgrößen (wie Energie und/oder Teilchenzahl) durchgeführt, was an der Reduzierung der Komplexität des Problems liegen mag. In dieser Arbeit nutzen wir hingegen eine numerische Methode, die auf einer schnellen Walsh-Hadamard Transformation beruht, was uns ermöglicht, eine exakte Zeitentwicklung für lange Zeiten und große Systeme vorzunehmen. Wie in Modellen mit Erhaltungsgrößen beobachten wir eine Verlangsamung der Dynamik, wenn wir uns dem Übergangspunkt zu der MBL Phase nähern. Dies macht sich in einem ungewöhnlichen Verhalten der Energieabsorption des Systems bemerkbar, was mit einer unterballistischen Ausbreitung der Verschränkung und einem gedehnt-exponentiellen Abklingen der Autokorrelationsfunktion im Einklang steht, wobei die zugehörigen Exponenten die verlangsamte Dynamik für fixe Systemgrößen widerspiegeln. Durch den Zugang zu größeren Systemen können wir jedoch einen deutlichen Fluss der Exponenten Richtung schnellerer Dynamik feststellen und daher nicht ausschließen, dass die verlangsamte Dynamik durch die endlichen Systemgrößen hervorgerufen wird (ein sogenannter finite size effect). Des weiteren finden wir Beispiele für eine nicht-monotone Zeitabhängigkeit der Exponenten, wobei die Dynamik sich zunächst verlangsamt, bevor sie zu späteren Zeiten wieder beschleunigt. Dies könnte mit der Betrachtung der verlangsamten Dynamik als Crossover-Phänomen mit einem lokalisierten kritischen Punkt vereinbar sein. Außerdem können wir keinen Unterschied zwischen dem geometrischen und arithmetischen Mittel der Autokorrelationsfunktion feststellen, sodass unsere Ergebnisse der phänomenologischen Erklärung des ungewöhnlichen Verhaltens, die auf Griffiths-Effekten beruht, widersprechen.
Im letzten Teil der Dissertation widmen wir der Dynamik in der ergodischen Phase und verknüpfen zwei zentrale Größen der Quanteninformation: die Verschränkungsentropie, eine der Wellenfunktion intrinsische Größe, die aus dem Zeitentwicklungsoperator generiert werden kann, und der Operatorverschränkungsentropie des Zeitentwicklungsoperators, die die Komplexität des Operators quantifiziert. In generischen Quantenvielkörpersystemen wächst die Verschränkungsentropie nach einem Quench aus einem Produktzustand typischerweise linear. In dieser Arbeit zeigen wir, dass es eine belastbaren Übereinstimmung zwischen der Operatorverschränkungsentropie des Zeitentwicklungsoperators und der Verschränkungsentropie typischer Produktzustände gibt, wobei bestimmte Produktzustände, z.B. $\sigma_z$-Basiszustände, eine schnellere Verschränkungsproduktion aufweisen können. Unsere Analyse basiert auf numerischen Simulationen von statischen und periodisch getriebenen Quanten-Spinketten in einem ungeordneten Magnetfeld. Sowohl die Verschränkungsentropie der Wellenfunktion als auch die Operatorverschränkungsentropie wächst einem Potenzgesetz folgend mit den selben unordnungsabhängigen Exponenten. Damit schaffen wir Klarheit bezüglich der Unstimmigkeiten der Exponenten in den vorherigen Ergebnissen. Unsere Resultate geben außerdem Hinweise auf eine verlangsamte Informationsausbreitung auf der ergodischen Seite des MBL Übergangs ohne Erhaltungsgrößen.
|
84 |
Nonequilibrium phenomena and dynamical controls in strongly correlated quantum systems driven by AC and DC electric fields / 交流・直流電場に駆動された強相関電子系における非平衡現象と動的制御Takasan, Kazuaki 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第21548号 / 理博第4455号 / 新制||理||1640(附属図書館) / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 川上 則雄, 教授 田中 耕一郎, 教授 前野 悦輝 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
|
85 |
Dynamics of active deformable particle - Two types of active spinning motions and dynamics in external flow field - / アクティブソフトマターのダイナミクス -2種類の自転運動と流れの中での運動-Tarama, Mitsusuke 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第18782号 / 理博第4040号 / 新制||理||1582(附属図書館) / 31733 / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 佐々 真一, 教授 山本 潤, 准教授 荒木 武昭 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
|
86 |
Driving micro-scale object by a dc electric field / 油中マイクロスケール物体の直流電場による駆動Kurimura, Tomo 23 March 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第19475号 / 理博第4135号 / 新制||理||1595(附属図書館) / 32511 / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)講師 市川 正敏, 教授 佐々 真一, 教授 山本 潤 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
|
87 |
Kondo Effect and Topological Phenomena in Ultracold Atoms / 冷却原子系における近藤効果とトポロジカル現象Nakagawa, Masaya 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第20163号 / 理博第4248号 / 新制||理||1611(附属図書館) / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 川上 則雄, 教授 高橋 義朗, 准教授 柳瀬 陽一 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
|
88 |
Renormalization Group Analysis of Nonequilibrium Phase Transitions in Driven Disordered Systems / 非平衡外力で駆動されるランダム系における相転移の繰込み群解析Haga, Taiki 26 March 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第20895号 / 理博第4347号 / 新制||理||1624(附属図書館) / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 佐々 真一, 教授 川上 則雄, 教授 早川 尚男 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
|
89 |
Kinetic algorithms for non-equilibrium gas dynamicsEppard, William M. 06 June 2008 (has links)
New upwind kinetic-difference schemes have been developed for flows with nonequilibrium thermodynamics and chemistry. These schemes are derived from the Boltzmann equation with the resulting Euler schemes developed as moments of the discretized Boltzmann scheme with a locally Maxwellian velocity distribution. Application of a directionally-split Courant-Isaacson-Rees (CIR) scheme at the Boltzmann level results in a flux-vector splitting scheme at the Euler level and is called Kinetic Flux-Vector Splitting (KFVS). Extension to flows with finite-rate chemistry and vibrational relaxation is accomplished utilizing non-equilibrium kinetic theory. Computational examples are presented comparing KFVS with the schemes of Van-Leer and Roe for quasi-one-dimensional flow through a supersonic diffuser, inviscid flow through two-dimensional inlet, 'viscous flow over a cone at zero angle-of-attack, and shock-induced combustion/detonation in a premixed hydrogen-air mixture. Calculations are also shown for the transonic flow over a bump in a channel and the transonic flow over an NACA 0012 airfoil. The results show that even though the KFVS scheme is a Riemann solver at the kinetic level, its behavior at the Euler level is more similar to the the existing flux-vector splitting algorithms than to the flux-difference splitting scheme of Roe.
A new approach toward the development of a genuinely multi-dimensional Riemann solver is also presented. The scheme is based on the same kinetic theory considerations used in the development of the KF VS scheme. The work has been motivated by the recent progress on multi-dimensional upwind schemes by the groups at the University of Michigan and the Von Karman Institute. These researchers have developed effective upwind schemes for the multi-dimensional linear advection equation using a cell-vertex fluctuation-splitting approach on unstructured grids of triangles or tetrahedra. They have made preliminary applications to the Euler equations using several wave decomposition models of the flux derivative. The issue of the appropriate wave model does not appear to be adequately resolved. The approach taken in the present work is to apply these new multi-dimensional upwind schemes for the scalar advection equation at the Boltzmann level. The resulting Euler schemes are obtained as moments of the fluctuations in the Maxwellian distribution function. The development is significantly more complicated than standard (dimensionally-split) kinetic schemes in that the Boltzmann discretization depends upon the direction of the molecular velocities which must be accounted for in the limits of integration in velocity space. The theoretical issues have been solved through analytic quadrature and Euler schemes have been developed. For this formulation it was not necessary to prescribe any explicit wave decomposition model. Encouraging preliminary results have been obtained for perfect gases on uniform Cartesian meshes with first-order spatial accuracy. Results are presented for a 29° shock reflection, a 45° shear discontinuity, and Mach 3 flow over a step.
Finally, methods for obtaining accurate gas-dynamic simulations in the continuum transition regime are considered. In particular, large departures from translational equilibrium are modeled using algorithms based on the Burnett equations instead of the Navier-Stokes equations. Here, the same continuum formulation of the governing equations is retained, but new constitutive relations based on higher-order Chapman-Enskog theory are introduced. Both a rotational relaxation model and a bulk-viscosity model have been considered for simulating rotational non-equilibrium. Results are presented for hypersonic normal shock calculations in argon and diatomic nitrogen and comparisons are made with Direct Simulation Monte Carlo (DSMC) results. The present work closely follows that of the group at Stanford, however, the use of upwind schemes and the bulk-viscosity model represent new contributions. / Ph. D.
|
90 |
Nonequilibrium Shock-Layer Radiative Heating for Earth and Titan EntryJohnston, Christopher Owen 13 December 2006 (has links)
This thesis examines the modeling of the shock-layer radiative heating associated with hypersonic vehicles entering the atmospheres of Earth and Titan. For Earth entry, flight conditions characteristic of lunar-return are considered, while for Titan entry, the Huygens probe trajectory is considered. For both cases, the stagnation region flowfield is modeled using a two-temperature chemical nonequilibrium viscous shock layer (VSL) approach. This model is shown to provide results that are in agreement with the more computationally expensive Navier-Stokes solutions. A new radiation model is developed that applies the most up-to-date atomic and molecular data for both the spectrum and non-Boltzmann modeling. This model includes a new set of atomic-lines, which are shown to provide a significant increase in the radiation (relative to previous models) resulting from the 1 - 2 eV spectral range. A new set of electronic-impact excitation rates was compiled for the non-Boltzmann modeling of the atomic and molecular electronic states. Based on these new rates, a novel approach of curve-fitting the non-Boltzmann population of the radiating atomic and molecular states was developed. This new approach provides a simple and accurate method for calculating the atomic and molecular non-Boltzmann populations. The newly-developed nonequilibrium VSL flowfield and nonequilibrium radiation models were applied to the Fire II and Apollo 4 cases, and the resulting radiation predictions were compared with the flight data.
For the Fire II case, the present radiation-coupled flowfield model provides intensity values at the wall that predicted the flight data better than any other previous study, on average, throughout the trajectory for the both the 0.2 - 6.0 eV and 2.2 - 4.1 eV spectral ranges. The present results over-predicted the calorimeter measurements of total heat flux over most of the trajectory. This was shown to possibly be a result of the super-catalytic assumption for the wall boundary condition, which caused the predicted convective heating to be too high. For the Apollo 4 case, over most of the trajectory the present model over-predicted the flight data for the wall radiative intensity values between 0.2 - 6.2 eV.
For the analysis of Huygens entry into Titan, the focus of the radiation model was the CN violet band. An efficient and accurate method of modeling the radiation from this band system was developed based on a simple modification to the smeared rotational band (SRB) model. This modified approach, labeled herein as SRBC, was compared with a detailed line-by-line (LBL) calculation and shown to compare within 5% in all cases. The SRBC method requires many orders-of-magnitude less computational time than the LBL method, which makes it ideal for coupling to the flowfield. The non-Boltzmann modeling of the CN electronic states, which govern the radiation for Huygens entry, is discussed and applied. The radiation prediction resulting from the non-Boltzmann model is up to 70% lower than the Boltzmann result. A new method for treating the escape factor in detail, rather than assuming a value equal to one, was developed. This treatment is shown to increase the radiation from the non-Boltzmann model by about 10%. / Ph. D.
|
Page generated in 0.0813 seconds