Spelling suggestions: "subject:"equilibrium physics"" "subject:"disequilibrium physics""
1 |
Driving micro-scale object by a dc electric field / 油中マイクロスケール物体の直流電場による駆動Kurimura, Tomo 23 March 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第19475号 / 理博第4135号 / 新制||理||1595(附属図書館) / 32511 / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)講師 市川 正敏, 教授 佐々 真一, 教授 山本 潤 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
|
2 |
[pt] MÁQUINAS BROWNIANAS NÃO LINEARES / [en] NONLINEAR BROWNIAN MACHINES06 April 2021 (has links)
[pt] Na última década temos visto grande interesse na física de motores microscópicos
de uma particula. Não só temos visto grandes avanços na descrição
teórica de como esses sistemas se comportam como também, graças aos
avanços na área de manipulação microscópica, somos capazes de reproduzir
esses sistemas experimentalmente. A literatura é vasta quando consideramos
máquinas onde uma partícula é sujeita a um potencial harmônico onde
podemos controlar sua rigidez e em contato com um banho térmico de temperatura
controlável. Motivados por esses resultados fascinantes, decidimos
investigar um mecanismo alternativo para o estudo de máquinas. Propomos
e investigamos uma configuração onde uma única partícula com potencial
interno não linear em contato com um banho térmico de temperatura T que
controlamos, em seguida introduzimos um potencial quadrático externo centrado
em uma posição L que quebrará a simetria criando uma direção onde
a partícula pode flutuar com maior facilidade. Podemos usar essa quebra
de simetria para converter calor em trabalho. Começando com uma correção
não linear ao potencial interno predominantemente linear, usamos a
teoria de perturbação para resolver a equação de Langevin do sistema até
a primeira ordem da não linearidade k4 e obtemos o trabalho esperado e
o calor absorvido. Então relaxamos a restrição de pequena não linearidade
impondo que o período de cada ciclo seja tão grande que, ao menos parcialmente,
o sistema possa ser considerado em equilíbrio com o banho térmico.
Usando mecânica estatística clássica obtemos resultados para um alcance
maior das não linearidades. Uma vez que a componente central de nossas
máquinas é a assimetria, extendemos o potencial interno para o mais geral,
embora nem sempre analítico V(i)(x) proporcional a (x) elevado à alfa, que chamamos de potencial
tipo-alfa. Usando principalmente técnicas numéricas investigamos as propriedades
e resultados para diferentes valores de alfa. Por fim estudamos o ciclo
de Carnot substituindo os ramos adiabáticos com isentrópicos, investigando
o relacionamento entre alfa e as trajetórias isentrópicas. Todos os resultados
são comparados com simulações numéricas. / [en] In the recent decade we have seen great interest in the physics of
single particle microscopic engines. Not only we have seen advances in the
theoretical understanding of how such systems behave but also, thanks
to the advanced level of microscopic manipulations, we are capable of
reproducing these systems in experimental situations. The literature is quite
large when considering machines where a single particle is subjected to a
harmonic potential where we can control the stiffness and in contact with
a heat bath of controllable temperature. Motivated by these outstanding
results, we have decided to investigate an alternative mechanism to studying
machines. We propose and investigate a setup where a single particle with
an internal nonlinear potential in contact with a heat bath of temperature
T that we can control, then we introduce an external quadratic potential
centered in a position L which will break the internal symmetry and create
a direction where the particle can fluctuate to with greater ease. We can
use this symmetry breaking to convert heat into work. Starting with a
nonlinear correction to a predominantly linear internal potential, we use
perturbation theory to solve the Langevin equation of the system up to the
first order o k4 and obtain the expected work and absorbed heat. We then
relax the restriction of a small nonlinear by imposing that the cycle periods
are so large that, at least to some extent, the system can be considered
in equilibrium with the heat bath. Using classical statistical mechanics we
obtain results for a wider range of nonlinearities. Since the key component of
our machines is the asymmetry, we extend the internal potential to the more
general but not always analytical form V(i)(x) proportional to (x) raised to alpha which we label alpha-typepotential. Using primarily numerical techniques investigate its properties
and outputs for different values of alpha. Lastly we study the Carnot cycle
by replacing the adiabatical branches with isentropic ones, investigating
the relationship between alpha and the isentropic trajectories. All results are
compared with numerical simulations.
|
3 |
Long-time Correlations in Nonequilibrium Dispersion ForcesReiche, Daniel 16 February 2021 (has links)
Wir untersuchen die Dynamik von offenen Quantensystemen sowohl im Gleichgewicht als
auch im Nichtgleichgewicht. Unser Fokus liegt dabei auf der quantenoptischen Dispersionswechselwirkung zwischen einem mikroskopischen Teilchen und einer komplexen elektromagnetischen Umgebung. Wir sind der Meinung, dass Langzeitkorrelationen in dem System essenziell zum Verständnis der Dynamik des Teilchens beitragen können. Unter Langzeitkorrelationen verstehen wir die Beiträge zur Autokorrelationsfunktion von Quantenoperatoren, die als ein inverses Potenzgesetz in der Verzögerungszeit skalieren. Das Einbeziehen von Langzeitkorrelationen in unser theoretisches Modell sichert die Selbstkonsistenz unserer Beschreibung und ermöglicht es uns, die Rückkopplung der Umgebung auf das Teilchen vollständig zu berücksichtigen. Darüber hinaus erlaubt es uns die Vorhersage von bisher übersehenen Effekten und Mechanismen, die das Verhalten von Dispersionskräften im Gleichgewicht und Nichtgleichgewicht bestimmen. Unsere Beispiele reichen von der Wechselwirkungsentropie des magnetischen Casimir-Polder-Effekts, über den Einfluss von Materialeigenschaften und geometrischen Überlegungen auf experimentelle Aufbauten, bis hin zur Thermodynamik von Quantenreibung. Wir geben den Leser_innen außerdem eine Orientierungshilfe, wann und wie Langzeitkorrelationen in theoretische Modellbildungen einbezogen werden müssten und welche Auswirkungen im Zusammenhang mit quantenoptischen Dispersionskräften zu erwarten sind. / We explore the dynamics of open quantum systems in both equilibrium and nonequilibrium
situations. Our focus lies on the quantum-optical dispersion interaction between a microscopic particle and a complex electromagnetic environment. We argue that long-time correlations in the system can be essential for understanding the dynamics of the particle. We define long-time correlations as those contributions to the autocorrelation function of quantum operators which scale as an inverse power law in the time delay. Incorporating long-time correlations into our theoretical model safeguards the self-consistency of our description and allows us to consider the full back-action of the environment on the particle. Moreover, it leads us to the prediction of previously overlooked effects and mechanisms determining dispersion forces in equilibrium and nonequilibrium. Our examples range from the interaction entropy of the magnetic Casimir-Polder effect, over the impact of material properties and geometric considerations for experimental setups, all the way down to the thermodynamics of quantum friction. We further provide the reader with a guideline when and how to include long-time correlations into theoretical models and what effects can be expected to emerge in the context of quantum-optical dispersion forces.
|
Page generated in 0.0673 seconds