• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[en] COLLECTIVE BEHAVIOR OF LIVING BEINGS UNDER SPATIOTEMPORAL ENVIRONMENT FLUCTUATIONS / [pt] COMPORTAMENTO COLETIVO DE ORGANISMOS VIVOS SOB FLUTUAÇÕES ESPAÇO-TEMPORAIS DO MEIO AMBIENTE.

EDUARDO HENRIQUE FILIZZOLA COLOMBO 10 January 2019 (has links)
[pt] Organismos vivos têm seus próprios meios de locomoção e são capazes de se reproduzir. Além disto, o habitat no qual os organismos estão inseridos é tipicamente heterogêneo, de modo que as condições ambientais variam no tempo e no espaço. Nesta tese, são propostos e investigados modelos teóricos para compreender o comportamento coletivo de organismos vivos, visando responder questões relevantes sobre a organização e preservação da população utilizando técnicas analíticas e numéricas. Inicialmente, considerando um habitat homogêneo, em que as propriedades estatísticas das condições ambientais são independentes do tempo e do espaço, estudamos como padrões espaço-temporais podem emergir na distribuição da população devido a interações não-locais e investigamos o papel das flutuações ambientais neste processo. Em seguida, assumindo um meio ambiente heterogêneo, analisamos o caso de um único domínio de habitat. Considerando uma classe de equações não lineares, introduzindo flutuações temporais e interações entre os organismos, fornecemos uma perspectiva geral da estabilidade de populações neste caso, desafiando os conceitos ecológicos anteriores. Em um segundo passo, assumindo uma paisagem complexa fragmentada, consideramos que os indivíduos têm acesso a informações sobre a estrutura espacial do meio. Mostramos que os indivíduos sobrevivem quando as regiões espaciais viáveis estão suficientemente aglomeradas e observamos que o tamanho da população é maximizado quando os indivíduos utilizam parcialmente a informação do meio ambiente. Finalmente, como resultados exatos analíticos não são factíveis em muitas situações importantes, propomos uma abordagem efetiva para interpretar os dados experimentais. Assim, somos capazes de conectar a heterogeneidade do ambiente e a persistência da população, caracterizada pela distribuição de probabilidade para os tempos de vida. / [en] Living entities have their own means of locomotion and are capable of reproduction. Furthermore, the habitat in which organisms are embedded is typically heterogeneous, such that environment conditions vary in time and space. In this thesis, theoretical models to understand the collective dynamics of living beings have been proposed and investigated aiming to address relevant questions such as population organization and persistence in the environment, using analytical and numerical techniques. Initially, considering an homogeneous habitat, in which the statistical properties of the environmental conditions are time and space independent, we study how spatiotemporal order can emerge in the population distribution due to nonlocal interactions and investigate the role of environment fluctuations in the self-organization process. Further, we continue our investigation assuming an heterogeneous environment, starting with the simplest case of a single habitat domain, and we obtain the critical conditions for population survival for different population dynamics. Considering a class of nonlinear equations, introducing temporal oscillations and interactions among the organisms, we are able to provide a general picture of population stability in a single habitat domain, challenging previous ecological concepts. At last, assuming a fragmented complex landscape, resembling realistic properties observed in nature, we additionally assume that individuals have access to information about the spatial structure. We show that individuals survive when patches of viable regions are clustered enough and, counter-intuitively, observe that population size is maximized when individuals have partial information about the habitat. Finally, since, analytical exact results are not feasible in many important situations, we propose an effective approach to interpret experimental data. This way we are able to connect environment heterogeneity and population persistence.
2

[pt] MÁQUINAS BROWNIANAS NÃO LINEARES / [en] NONLINEAR BROWNIAN MACHINES

06 April 2021 (has links)
[pt] Na última década temos visto grande interesse na física de motores microscópicos de uma particula. Não só temos visto grandes avanços na descrição teórica de como esses sistemas se comportam como também, graças aos avanços na área de manipulação microscópica, somos capazes de reproduzir esses sistemas experimentalmente. A literatura é vasta quando consideramos máquinas onde uma partícula é sujeita a um potencial harmônico onde podemos controlar sua rigidez e em contato com um banho térmico de temperatura controlável. Motivados por esses resultados fascinantes, decidimos investigar um mecanismo alternativo para o estudo de máquinas. Propomos e investigamos uma configuração onde uma única partícula com potencial interno não linear em contato com um banho térmico de temperatura T que controlamos, em seguida introduzimos um potencial quadrático externo centrado em uma posição L que quebrará a simetria criando uma direção onde a partícula pode flutuar com maior facilidade. Podemos usar essa quebra de simetria para converter calor em trabalho. Começando com uma correção não linear ao potencial interno predominantemente linear, usamos a teoria de perturbação para resolver a equação de Langevin do sistema até a primeira ordem da não linearidade k4 e obtemos o trabalho esperado e o calor absorvido. Então relaxamos a restrição de pequena não linearidade impondo que o período de cada ciclo seja tão grande que, ao menos parcialmente, o sistema possa ser considerado em equilíbrio com o banho térmico. Usando mecânica estatística clássica obtemos resultados para um alcance maior das não linearidades. Uma vez que a componente central de nossas máquinas é a assimetria, extendemos o potencial interno para o mais geral, embora nem sempre analítico V(i)(x) proporcional a (x) elevado à alfa, que chamamos de potencial tipo-alfa. Usando principalmente técnicas numéricas investigamos as propriedades e resultados para diferentes valores de alfa. Por fim estudamos o ciclo de Carnot substituindo os ramos adiabáticos com isentrópicos, investigando o relacionamento entre alfa e as trajetórias isentrópicas. Todos os resultados são comparados com simulações numéricas. / [en] In the recent decade we have seen great interest in the physics of single particle microscopic engines. Not only we have seen advances in the theoretical understanding of how such systems behave but also, thanks to the advanced level of microscopic manipulations, we are capable of reproducing these systems in experimental situations. The literature is quite large when considering machines where a single particle is subjected to a harmonic potential where we can control the stiffness and in contact with a heat bath of controllable temperature. Motivated by these outstanding results, we have decided to investigate an alternative mechanism to studying machines. We propose and investigate a setup where a single particle with an internal nonlinear potential in contact with a heat bath of temperature T that we can control, then we introduce an external quadratic potential centered in a position L which will break the internal symmetry and create a direction where the particle can fluctuate to with greater ease. We can use this symmetry breaking to convert heat into work. Starting with a nonlinear correction to a predominantly linear internal potential, we use perturbation theory to solve the Langevin equation of the system up to the first order o k4 and obtain the expected work and absorbed heat. We then relax the restriction of a small nonlinear by imposing that the cycle periods are so large that, at least to some extent, the system can be considered in equilibrium with the heat bath. Using classical statistical mechanics we obtain results for a wider range of nonlinearities. Since the key component of our machines is the asymmetry, we extend the internal potential to the more general but not always analytical form V(i)(x) proportional to (x) raised to alpha which we label alpha-typepotential. Using primarily numerical techniques investigate its properties and outputs for different values of alpha. Lastly we study the Carnot cycle by replacing the adiabatical branches with isentropic ones, investigating the relationship between alpha and the isentropic trajectories. All results are compared with numerical simulations.

Page generated in 0.0387 seconds