1 |
Exploring Fit for Nonlinear Structural Equation ModelsPfleger, Phillip Isaac 01 April 2019 (has links)
Fit indices and fit measures commonly used to determine the accuracy and desirability of structural equation models are expected to be insensitive to nonlinearity in the data. This includes measures as ubiquitous as the CFI, TLI, RMSEA, SRMR, AIC, and BIC. Despite this, some software will report these measures when certain models are used. Consequently, some researchers may be led to use these fit measures without realizing the impropriety of the act. Alternative fit measures have been proposed, but these measures require further testing. As part of this thesis, a large simulation study was carried out to investigate alternative fit measures and to confirm whether the traditional measures are practically blind to nonlinearity in the data. The results of the simulation provide conclusive evidence that fit statistics and fit indices based on the chi-square distribution or the residual covariance matrix are entirely insensitive to nonlinearity. The posterior predictive p-value was also insensitive to nonlinearity. Only fit measures based on the structural residuals (i.e., HFI and R-squared) showed any sensitivity to nonlinearity. Of these, the R-squared was the only reliable measure of nonlinear model misspecification. This thesis shows that an effective strategy for determining whether a nonlinear model is preferable to a linear one involves using the R-squared to compare models that have been fit to the same data. An R-squared that is much larger for the nonlinear model than the linear model suggests that the linear model may be less desirable than the nonlinear model. The proposed method is intended to be supplementary to substantive theory. It is argued that any dependence on fit indices or fit statistics that places these measures on a higher pedestal than substantive theory will invariably lead to blindness on the part of the researcher. In other words, unwavering adherence to goodness-of-fit measures limits the researchers vision to what the measures themselves can detect.
|
2 |
Segmentation des images radiographiques à rayon-X basée sur la fusion entropique et Reconstruction 3D biplanaire des os basée sur la modélisation statistique non-linéaireNguyen, Dac Cong Tai 08 1900 (has links)
Dans cette thèse, nous présentons une méthode de segmentation d’images radiographiques des membres inférieurs en régions d’intérêt (ROIs), une méthode de recalage rigide tridimensionnel (3D) / bidimensionnel (2D) des prothèses du genou sur les deux images biplanaires radiographiques calibrées et une méthode de reconstruction 3D des membres inférieurs à
partir de deux images biplanaires radiographiques calibrées.
Le premier article présente une méthode de segmentation de rotule, astragale et bassin des images radiographiques en régions d’intérêt basée sur la fusion de multi-atlas et superpixels. Cette méthode utilise l’apprentissage d’une base de données d’images radiographiques de ces os segmentées manuellement et recalées entre elles pour estimer un ensemble de superpixels permettant de tenir compte de toute la variabilité locale et non linéaire existante dans la base, puis la propagation d’étiquettes basée sur le concept d’entropie pour raffiner la carte de segmentations en régions internes afin d’obtenir le résultat final.
Le deuxième article présente une méthode de recalage rigide 3D / 2D des composants tibiaux et fémoraux de prothèse du genou sur deux images biplanaires radiographiques calibrées. Cette méthode utilise une mesure de similarité hybride basée sur les notions de contours et régions puis un algorithme d’optimisation stochastique pour estimer la position des composants. La similarité basée sur les régions est stable et robuste contre les bruits. Cependant, cette mesure n’est pas précise car le nombre de pixels aux contours est inférieur au celui à l’intérieur de la région. Au contraire, la similarité basée sur les contours est précise mais plus sensible au bruit ou à d’autres artefacts existant dans les images. C’est pourquoi la combinaison de ces deux similarités fournit une méthode de recalage robuste et précise.
Le troisième article représente une méthode statistique biplanaire de reconstruction 3D de rotule, astragale et bassin. Cette méthode utilise un algorithme de réduction de dimensionnalité pour définir un modèle déformable paramétrique qui contient toutes les déformations statistiques admissibles apprises à partir d’une base de données des structures osseuses. Puis
un algorithme d’optimisation stochastique est utilisé pour minimiser la différence entre la projection des contours / régions des modèles surfaciques osseux avec ceux segmentés sur les deux images radiographiques. / In this thesis, we present a segmentation method of lower limbs of X-ray images into regions of interest (ROIs), a three-dimensional (3D) / two-dimensional (2D) rigid registration method of knee implant components to biplanar X-ray images, and a 3D reconstruction method of the lower limbs using biplanar X-ray images.
The first paper presents a superpixel and multi-atlas-based segmentation method of the patella, talus, and pelvis into regions of interest. This method uses a training dataset of pre-segmented and co-registered X-ray images of these bones to estimate a collection of superpixels allowing to take into account all the nonlinear and local variability existing in the dataset, then a propagation of label based on the entropy concept for refining the segmentation map into internal regions to the final result.
The second paper presents a 3D / 2D rigid registration method of tibial and femoral components of knee implants to calibrated biplanar X-ray images. This method uses a hybrid edge- and region-based similarity measure then a stochastic optimization algorithm to estimate the component position. The region-based similarity is stable and robust to noise. However, this measure is not precise because the number of pixels in the border is fewer than the number of pixels inside the region. On the contrary, the edge-based similarity is accurate but more sensitive to noise or other artifacts existing in the images. That’s why the combination of these two similarity types provides a robust and accurate registration method.
The third paper presents a statistical biplanar 3D reconstruction method of the patella, talus, and pelvis. This method uses a dimensionality reduction algorithm to define a deformable parametric model which contains all admissible statistical deformations learned from the bone structure dataset. Then a stochastic optimization algorithm is used to minimize the difference between the contour / region projection of bone models and the contours / regions in two segmented X-ray images.
|
Page generated in 0.1184 seconds