1 |
Hilbert Transform : Mathematical Theory and Applications to Signal processing / Hilbert transformation : Matematisk teori och tillämpningar inom signalbehandlingKlingspor, Måns January 2015 (has links)
The Hilbert transform is a widely used transform in signal processing. In this thesis we explore its use for three different applications: electrocardiography, the Hilbert-Huang transform and modulation. For electrocardiography, we examine how and why the Hilbert transform can be used for QRS complex detection. Also, what are the advantages and limitations of this method? The Hilbert-Huang transform is a very popular method for spectral analysis for nonlinear and/or nonstationary processes. We examine its connection with the Hilbert transform and show limitations of the method. Lastly, the connection between the Hilbert transform and single-sideband modulation is investigated.
|
2 |
ARIMA demand forecasting by aggregation / Prévision de la demande type ARIMA par agrégationRostami Tabar, Bahman 10 December 2013 (has links)
L'objectif principal de cette recherche est d'analyser les effets de l'agrégation sur la prévision de la demande. Cet effet est examiné par l'analyse mathématique et l’étude de simulation. L'analyse est complétée en examinant les résultats sur un ensemble de données réelles. Dans la première partie de cette étude, l'impact de l'agrégation temporelle sur la prévision de la demande a été évalué. En suite, Dans la deuxième partie de cette recherche, l'efficacité des approches BU(Bottom-Up) et TD (Top-Down) est analytiquement évaluée pour prévoir la demande au niveau agrégé et désagrégé. Nous supposons que la série désagrégée suit soit un processus moyenne mobile intégrée d’ordre un, ARIMA (0,1,1), soit un processus autoregressif moyenne mobile d’ordre un, ARIMA (1,0,1) avec leur cas spéciales. / Demand forecasting performance is subject to the uncertainty underlying the time series an organisation is dealing with. There are many approaches that may be used to reduce demand uncertainty and consequently improve the forecasting (and inventory control) performance. An intuitively appealing such approach that is known to be effective is demand aggregation. One approach is to aggregate demand in lower-frequency ‘time buckets’. Such an approach is often referred to, in the academic literature, as temporal aggregation. Another approach discussed in the literature is that associated with cross-sectional aggregation, which involves aggregating different time series to obtain higher level forecasts.This research discusses whether it is appropriate to use the original (not aggregated) data to generate a forecast or one should rather aggregate data first and then generate a forecast. This Ph.D. thesis reveals the conditions under which each approach leads to a superior performance as judged based on forecast accuracy. Throughout this work, it is assumed that the underlying structure of the demand time series follows an AutoRegressive Integrated Moving Average (ARIMA) process.In the first part of our1 research, the effect of temporal aggregation on demand forecasting is analysed. It is assumed that the non-aggregate demand follows an autoregressive moving average process of order one, ARMA(1,1). Additionally, the associated special cases of a first-order autoregressive process, AR(1) and a moving average process of order one, MA(1) are also considered, and a Single Exponential Smoothing (SES) procedure is used to forecast demand. These demand processes are often encountered in practice and SES is one of the standard estimators used in industry. Theoretical Mean Squared Error expressions are derived for the aggregate and the non-aggregate demand in order to contrast the relevant forecasting performances. The theoretical analysis is validated by an extensive numerical investigation and experimentation with an empirical dataset. The results indicate that performance improvements achieved through the aggregation approach are a function of the aggregation level, the smoothing constant value used for SES and the process parameters.In the second part of our research, the effect of cross-sectional aggregation on demand forecasting is evaluated. More specifically, the relative effectiveness of top-down (TD) and bottom-up (BU) approaches are compared for forecasting the aggregate and sub-aggregate demands. It is assumed that that the sub-aggregate demand follows either a ARMA(1,1) or a non-stationary Integrated Moving Average process of order one, IMA(1,1) and a SES procedure is used to extrapolate future requirements. Such demand processes are often encountered in practice and, as discussed above, SES is one of the standard estimators used in industry (in addition to being the optimal estimator for an IMA(1) process). Theoretical Mean Squared Errors are derived for the BU and TD approach in order to contrast the relevant forecasting performances. The theoretical analysis is supported by an extensive numerical investigation at both the aggregate and sub-aggregate levels in addition to empirically validating our findings on a real dataset from a European superstore. The results show that the superiority of each approach is a function of the series autocorrelation, the cross-correlation between series and the comparison level.Finally, for both parts of the research, valuable insights are offered to practitioners and an agenda for further research in this area is provided.
|
3 |
ARIMA demand forecasting by aggregationRostami Tabar, Bahman 10 December 2013 (has links) (PDF)
Demand forecasting performance is subject to the uncertainty underlying the time series an organisation is dealing with. There are many approaches that may be used to reduce demand uncertainty and consequently improve the forecasting (and inventory control) performance. An intuitively appealing such approach that is known to be effective is demand aggregation. One approach is to aggregate demand in lower-frequency 'time buckets'. Such an approach is often referred to, in the academic literature, as temporal aggregation. Another approach discussed in the literature is that associated with cross-sectional aggregation, which involves aggregating different time series to obtain higher level forecasts.This research discusses whether it is appropriate to use the original (not aggregated) data to generate a forecast or one should rather aggregate data first and then generate a forecast. This Ph.D. thesis reveals the conditions under which each approach leads to a superior performance as judged based on forecast accuracy. Throughout this work, it is assumed that the underlying structure of the demand time series follows an AutoRegressive Integrated Moving Average (ARIMA) process.In the first part of our1 research, the effect of temporal aggregation on demand forecasting is analysed. It is assumed that the non-aggregate demand follows an autoregressive moving average process of order one, ARMA(1,1). Additionally, the associated special cases of a first-order autoregressive process, AR(1) and a moving average process of order one, MA(1) are also considered, and a Single Exponential Smoothing (SES) procedure is used to forecast demand. These demand processes are often encountered in practice and SES is one of the standard estimators used in industry. Theoretical Mean Squared Error expressions are derived for the aggregate and the non-aggregate demand in order to contrast the relevant forecasting performances. The theoretical analysis is validated by an extensive numerical investigation and experimentation with an empirical dataset. The results indicate that performance improvements achieved through the aggregation approach are a function of the aggregation level, the smoothing constant value used for SES and the process parameters.In the second part of our research, the effect of cross-sectional aggregation on demand forecasting is evaluated. More specifically, the relative effectiveness of top-down (TD) and bottom-up (BU) approaches are compared for forecasting the aggregate and sub-aggregate demands. It is assumed that that the sub-aggregate demand follows either a ARMA(1,1) or a non-stationary Integrated Moving Average process of order one, IMA(1,1) and a SES procedure is used to extrapolate future requirements. Such demand processes are often encountered in practice and, as discussed above, SES is one of the standard estimators used in industry (in addition to being the optimal estimator for an IMA(1) process). Theoretical Mean Squared Errors are derived for the BU and TD approach in order to contrast the relevant forecasting performances. The theoretical analysis is supported by an extensive numerical investigation at both the aggregate and sub-aggregate levels in addition to empirically validating our findings on a real dataset from a European superstore. The results show that the superiority of each approach is a function of the series autocorrelation, the cross-correlation between series and the comparison level.Finally, for both parts of the research, valuable insights are offered to practitioners and an agenda for further research in this area is provided.
|
Page generated in 0.1354 seconds