• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Normally Supportive Sublattices of Crystallographic Space Groups

Clemens, Miles A 01 December 2018 (has links)
Normal subgroups can be thought of as the primary building blocks for decomposing mathematicalgroups into quotient groups. The properties of the resulting quotient groups are oftenused to determine properties of the group itself. This thesis considers normal subgroups of threedimensionalcrystallographic space groups that are themselves three-dimensional crystallographicspace groups; for convenience, we refer to such a subgroup as a csg-normal subgroup. We identifypractical restrictions on csg-normal subgroups that facilitate their tabulation. First, the point groupof an csg-normal subgroup must be a normal subgroup of the crystallographic point group of thespace group, which we refer to for convenience as a cpg-normal subgroup. For each of the cpgnormalsubgroups, which are all well known, we identify the abstract quotient group. Secondly,we identify necessary conditions on the sublattice basis of any csg-normal subgroup, and tabulatethe “normally supportive“ sublattices that meet these conditions, where some tables are symbolicforms that represent infinite families of sublattices. For a given space group, every csg-normalsubgroup must be an extension of such a normally supportive sublattice, though some normallysupportive sublattices may not actually support such extensions.
2

Stabilizers of direct composition series

Droste, Manfred, Göbel, Rüdiger 13 December 2018 (has links)
Let R be a domain, V a left R-module, and L a composition series of direct summands of V. Our main results show that if U is a stabilizer group of L containing the McLain-group associated with L , then U determines the chain (L,⊆) uniquely up to isomorphism or anti-isomorphism.
3

On ultraproducts of compact quasisimple groups

Schneider, Jakob 23 March 2021 (has links)
In this thesis I study metric aspects of finite nearly simple groups. Its four distinct chapters deal with four different questions. In the first chapter, I give a full description of the normal subgroup lattice of any algebraic ultraproduct of universal finite quasisimple groups. In the second, I investigate approximation questions for arbitrary abstract and topological groups by families of finite groups with conjugacy-invariant norms. In the third chapter, I prove that the map induced by any non-trivial word on the metric ultraproduct of classical groups of Lie type of unbounded rank is always surjective using cohomological and algebraic methods. In the last chapter, it is proved that (simple) metric ultraproducts of finite classical groups of Lie type of unbounded rank with different field sizes are always non-isomorphic. Also, if the field sizes are equal, two such ultraproducts can only be isomorphic if the Lie types are equal or one Lie type is orthogonal and the other symplectic.:Introduction 0 Notation, basic definitions, and facts 0.1 Group theory 0.2 Some ring and field theory 0.3 Ultraproducts and norms 1 The normal subgroup lattice of an algebraic ultraproduct 1.1 Introduction 1.2 Auxiliary geometric results 1.3 Relative bounded normal generation in universal finite quasisimple groups 1.4 The lattice of normal subgroups 2 Metric approximation of groups by finite groups 2.1 Introduction 2.2 Preliminaries 2.2.1 On C-approximable abstract groups 2.2.2 On C-approximable topological groups 2.3 On Sol-approximable groups 2.4 On Fin-approximable groups 2.5 On the approximability of Lie groups 3 Word maps are surjective on metric ultraproducts 3.1 Introduction 3.2 Symmetric groups 3.2.1 Power words 3.2.2 The cycle structure of elements from PSL_2(q) 3.2.3 Effective surjectivity of word maps over finite fields 3.2.4 Proof of Theorem 3.1 3.3 Unitary groups 3.3.1 Proof of Theorem 3.3 3.3.2 Further implications 3.3.3 Concluding remarks 3.4 Finite groups of Lie type 3.4.1 The linear case 3.4.2 The case of quasisimple groups of Lie type stabilizing a form 3.4.3 An alternative way of proving Theorem 3.1 using wreath products 4 Isomorphism questions for metric ultraproducts 4.1 Introduction 4.2 Description of conjugacy classes in S_U, GL_U(q), and PGL_U(q) 4.3 Characterization of torsion elements in S_U , GL_U(q), and PGL_U(q) 4.4 Faithful action of S_U and PGL_U(q) 4.5 Centralizers in S_U , GL_U(q), Sp_U(q), GO_U(q), and GU_U(q) 4.6 Centralizers in PGL_U(q), PSp_U(q), PGO_U(q), and PGU_U(q) 4.7 Double centralizers of torsion elements 4.7.1 The case S_U 4.7.2 The case PGL_U(q), PSp_U(q), PGO_U(q), and PGU_U(q) 4.8 Distinction of metric ultraproducts 4.8.1 Computation of e_G(o) when gcd{o,p}=gcd{o,|Z|}=1 4.8.2 Proof of Theorem 4.1 Index of Symbols Index Bibliography / In dieser Doktorarbeit studiere ich metrische Aspekte von endlichen fast-einfachen Gruppen. Ihre vier Kapitel beschäftigen sich mit vier unterschiedlichen Themenfeldern. Im ersten Kapitel gebe ich eine vollständige Beschreibung des Normalteilerverbandes eines algebraischen Ultraproduktes von universellen endlichen quasieinfachen Gruppen. Im zweiten beschäftige ich mich mit Approximationsfragen für beliebige abstrakte und topologische Gruppen durch Familien von endlichen Gruppen, auf denen eine konjugationsinvariante Norm erklärt ist. Im dritten Kapitel beweise ich, dass die Abbildung auf einem metrischen Ultraprodukt von klassischen Gruppen vom Lie-Typ von unbeschränktem Rang, die von einem beliebigen nicht-trivialen Wort induziert wird, immer surjektiv ist. Dabei verwende ich sowohl kohomologische als auch algebraische Methoden. Im letzten Kapitel beweise ich, dass (einfache) metrische Ultraprodukte von klassischen endlichen Gruppen vom Lie-Typ von unbeschränktem Rang mit unterschiedlicher Körpergröße immer nicht-isomorph sind. Ist die Körpergröße gleich, so können zwei solche Gruppen nur dann isomorph sein, falls sie auch denselben Lie-Typ haben, oder eine vom orthogonalen Typ und die andere vom symplektischen ist.:Introduction 0 Notation, basic definitions, and facts 0.1 Group theory 0.2 Some ring and field theory 0.3 Ultraproducts and norms 1 The normal subgroup lattice of an algebraic ultraproduct 1.1 Introduction 1.2 Auxiliary geometric results 1.3 Relative bounded normal generation in universal finite quasisimple groups 1.4 The lattice of normal subgroups 2 Metric approximation of groups by finite groups 2.1 Introduction 2.2 Preliminaries 2.2.1 On C-approximable abstract groups 2.2.2 On C-approximable topological groups 2.3 On Sol-approximable groups 2.4 On Fin-approximable groups 2.5 On the approximability of Lie groups 3 Word maps are surjective on metric ultraproducts 3.1 Introduction 3.2 Symmetric groups 3.2.1 Power words 3.2.2 The cycle structure of elements from PSL_2(q) 3.2.3 Effective surjectivity of word maps over finite fields 3.2.4 Proof of Theorem 3.1 3.3 Unitary groups 3.3.1 Proof of Theorem 3.3 3.3.2 Further implications 3.3.3 Concluding remarks 3.4 Finite groups of Lie type 3.4.1 The linear case 3.4.2 The case of quasisimple groups of Lie type stabilizing a form 3.4.3 An alternative way of proving Theorem 3.1 using wreath products 4 Isomorphism questions for metric ultraproducts 4.1 Introduction 4.2 Description of conjugacy classes in S_U, GL_U(q), and PGL_U(q) 4.3 Characterization of torsion elements in S_U , GL_U(q), and PGL_U(q) 4.4 Faithful action of S_U and PGL_U(q) 4.5 Centralizers in S_U , GL_U(q), Sp_U(q), GO_U(q), and GU_U(q) 4.6 Centralizers in PGL_U(q), PSp_U(q), PGO_U(q), and PGU_U(q) 4.7 Double centralizers of torsion elements 4.7.1 The case S_U 4.7.2 The case PGL_U(q), PSp_U(q), PGO_U(q), and PGU_U(q) 4.8 Distinction of metric ultraproducts 4.8.1 Computation of e_G(o) when gcd{o,p}=gcd{o,|Z|}=1 4.8.2 Proof of Theorem 4.1 Index of Symbols Index Bibliography

Page generated in 0.0473 seconds