• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimental and Numerical Analysis of Damage in Notched Composites

Aidi, Bilel 30 September 2016 (has links)
This dissertation contains the results from an experimental study, numerical, and analytical study conducted on quasi-isotropic carbon fiber laminates containing a center hole (notch) subjected to constant amplitude tension-tension fatigue loading in order to investigate the effect of fatigue damage development on the residual properties. Quasi-static tests were initially performed on notched composites using digital image correlation (DIC) to determine the strain profiles at selected transverse sections of the outer ply of the laminates and the static strength of the laminates. Subsequently, tension-tension fatigue tests were carried out at 70%, 75% and 80% of the nominal static failure load. A finite element model was developed using Abaqus and Digimat in which Digimat was used to implement the damage evolution model via a user-defined material subroutine. Damage initiation has been assessed using Hashin's failure criteria and the Matzenmiller model was adopted for damage evolution. A second finite element model was developed using Abaqus and Autodesk Simulation Composite Analysis (ASCA) in which ASCA was used to implement the user-material subroutine. The subroutine includes a failure initiation criterion based upon multi-continuum theory (MCT) and an energy-based damage evolution law. Numerical and experimental strain results were presented and compared for different section lines on the outer surface of the laminate at different loading stages. Additionally, the experimentally measured notched composite strength was compared with the predictions from the finite element solutions. These results are used as baseline for subsequent comparison with strain profiles obtained using DIC for specimens fatigued at different stress levels and fatigue lifetime fractions. The results showed a significant effect of fatigue damage development on strain redistribution even at early stages of fatigue. The results also showed the capability of DIC technique to identify damage initiation and its location. Furthermore, X-ray computed tomography (CT) was used to examine the sequence of damage development throughout the fatigue lifetime and to connect the observed damage mechanisms with the occurred change of strain profiles. Experimental vibrational modal analysis tests were also conducted to assess the effect of fatigue damage on the residual frequency responses (RFRs). Vibrational measurements were initially performed on pristine notched composites. The results are used as baseline for subsequent comparison with strain profiles obtained with DIC. Finite element models based on the classical plate theory (Kirchhoff) and the shear deformable theory (Mindlin) within the framework of equivalent single-layer and layer-wise concepts as well as the three-dimensional theory of elasticity are developed to predict the natural frequencies of non-fatigued specimen. These models are implemented using the finite element software, Abaqus, to determine the natural frequencies and the corresponding mode shapes. In addition, an analytical model based on Kirchhoff plate theory is developed. Using this approach, an equivalent bending-torsion beam model for cantilever laminated plates is extracted taking into account the reduction in local stiffness and mass induced by the center hole. Numerical and analytical natural frequency values are then compared with those obtained through experimental vibrational tests, and the accuracy of each finite element (FE) and analytical model type is assessed. It is shown that the natural frequencies obtained using the analytical and FE models are within 8% of the experimentally determined values. / Ph. D.

Page generated in 0.0583 seconds