• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Enzymatická hydrolýza odpadní papíroviny - zdroj suroviny pro výrobu kapalných biopaliv / Enzymatic hydrolysis of waste paper pulp - source of raw material for production of liquid biofuels

Brummer, Vladimír January 2010 (has links)
This master’s thesis is aimed at process of enzymatic hydrolysis of lignocellulosic material – waste paper as a source of raw material for production of liquid biofuels. In the theoretical part of this work are summarized previously used methods of hydrolysis and lignocellulosic materials used for the process of hydrolysis as a source of fermentable sugars for fermentation technology. The different types of waste paper are evaluated from the composition and usability with consideration to the papermaking process in order to select the appropriate type of waste paper for the enzymatic hydrolysis process. In the next part of this work are suggested technological premises and procedures for the preparation of raw materials and the subsequent enzymatic hydrolysis of these pre–treated materials. In the experimental part were optimized parameters of enzymatic hydrolysis using the Novozymes company enzyme package. Enzymatic degradation of cellulose to reducing sugars was observed using Somogyi – Nelson method. For the verification of hydrolysis conditions were used model materials with high cellulose content – pulp and filter paper. Conditions, which seems to be the best after testing on the model materials, were verified on specific waste paper materials – offset cardboard, recycled paper, matte MYsol paper and for comparison again on model materials – pulp and filter paper. The highest yields was achieved with the use of cardboard, which was further tested using various combinations of pretreatment to material for purpose of increase the yields of hydrolysis.
2

Enzymatická hydrolýza odpadní papíroviny - zdroj suroviny pro výrobu kapalných biopaliv / The enzymatic hydrolysis of waste paper - a source of raw materials for production of liquid biofuels

Lepař, Petr January 2011 (has links)
In diploma thesis the process of enzymatic hydrolysis of waste paper as a source for the production of liquid biofuels is discused. It follows directly the homonymous diploma thesis from Ing. Brummer, and it is based on the findings, which were solved and decided in previous work. In the theoretical part there is a summarization of basic information on the enzymatic hydrolysis of waste paper and the associated influences of various factors of the rate and degree of hydrolysis. Higher attention is paid to a waste cardboard and its pretreatment methods due to the maximalization of the yield of hydrolysis. The next part summarizes options of the fermentative production of biofuels, focusing on the method of simultaneous saccharification and fermentation, where the further appropriate organism for ethanol fermentation is discussed. The last part is about the technological process from the raw material input to the separation of ethanol. In the experimental section the pre-treatment of waste paper in order to maximize the efficiency of hydrolysis was examined. The best results were achieved using a vibratory mill. In addition, various parameters for simultaneous saccharification and fermentation were optimized using enzymes from Novozymes® company and the yeast Saccharomyces cerevisiae. The conversion rate of waste paper cellulose to reducing sugars was observed by spectrophotometric method by Somogyi - Nelson and the amount of produced ethanol was quantified using HPLC / RI. As a part of this thesis some conditions (amount of enzyme, substrate, nutrients, yeasts, temperature, pH, type of buffer) were optimized to maximize the effectiveness of the overall process. All experiments were carried out on corrugated cardboard, which was chosen as the most promising material for hydrolysis that was among the waste paper pulp in diploma thesis by Ing. Brummer.
3

Studium růstu a optimalizace produkce vybraných metabolitů Zymomonas mobilis / Study of growth and optimization of selected metabolites production by Zymomonas mobilis

Lukačková, Adéla January 2012 (has links)
In the diploma thesis are discussed the process of enzymatic hydrolysis of waste paper as a source for the production of bioethanol by bacteria Zymomonas mobilis. In the theoretical part summarize basic information about particular methods of hydrolysis, about paper used as a raw material for enzymatic hydrolysis, about possibilities of the fermentative production of bioethanol focusing on the method of simultaneous saccharification and fermentation comparison with enzymatic hydrolysis and fermentation. Suitable microorganisms for ethanolic fermentation and simultaneous saccharification and fermentation and their advantages and disadvantages, are further discussed in this part as well. The theoretical part ends with the suggestion of the technological process for production of bioetanol. It covers all necessary steps from the input of raw material to the separation of produced ethanol. In the experimental part various parameters of hydrolysis, fermentation and simultaneous saccharification and fermentation were optimized using enzymes from Novozymes® company and the Zymomonas mobilis CCM2770 and Zymomonas mobilis LMG457 bacterium. The conversion rate of paper cellulose to gluckose and production of ethanol were observed by HPLC/RI method. Type of buffer, quantity of cells, enzyme and substrate were optimized in order to maximize the efficiency of the process. All experiments were performed on paper containing high amount of cellulose and for comparison on standard medium which contains gluckose. The highest yields was achieved with the use of Novozymes® Cellulosic ethanol enzyme Kit. The strain Zymomonas mobilis LMG457 has demonstrated as a better producer.
4

Estudo de misturas de enzimas (complexo celulásico, complexo enzimático, xilanase, β-glucanase e xilanase, β-glucosidase e Glucoamilase) na bioconversão do bagaço da cana-de-açúcar em etanol

MOREIRA, Rosiane Fernandes January 2015 (has links)
Submitted by Cássio da Cruz Nogueira (cassionogueirakk@gmail.com) on 2017-02-13T14:32:46Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Dissertacao_EstudoMisturasEnzimas.pdf: 2710960 bytes, checksum: 1b18c9a8f74a5fcb6bcc5409ea90c5df (MD5) / Approved for entry into archive by Edisangela Bastos (edisangela@ufpa.br) on 2017-02-14T16:04:10Z (GMT) No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Dissertacao_EstudoMisturasEnzimas.pdf: 2710960 bytes, checksum: 1b18c9a8f74a5fcb6bcc5409ea90c5df (MD5) / Made available in DSpace on 2017-02-14T16:04:10Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Dissertacao_EstudoMisturasEnzimas.pdf: 2710960 bytes, checksum: 1b18c9a8f74a5fcb6bcc5409ea90c5df (MD5) Previous issue date: 2015 / Neste trabalho, propôs-se avaliar misturas de enzimas comerciais fornecidas pela Novozymes A/S. As enzimas utilizadas neste trabalho foram: complexo celulásico, xilanase, β-glucosidase, na produção de glicose a partir do bagaço de cana-de-açúcar submetido a tratamento alcalino com solução de hidróxido de sódio na temperatura ambiente, 70ºC, 90ºC e 120ºC. Os rendimentos do BCA em base seca após tratamento com solução de NaOH a 6% (m/v) foram de 30,64% ± 1,395 (PACTA), 44,00% ± 1,787 (PAC70), 65,91% ± 1,096 (PAC90), e 95,25% ± 1,461 (PAC120), respectivamente. Os teores de cinzas para o BCA foram de 2,05% ± 0,027 (PACTA), 0,62% ± 0,013 (PAC70), 0,48% ± 0,007 (PAC90) e 0,18% ± 0,008 (PAC120). Os teores de lignina foram de 20,67 ± 0,603 (PACTA), 13,03 ± 0,711 (PAC70), 6,05 ± 0,196 (PAC90) e 5,49 ± 0,151 (PAC120). Os rendimentos da fermentação alcoólica foram de 33,44(PACTA); 41,56(BCA70); 68,95 (BCA90) e 71,38 (BCA120). Os resultados obtidos sugerem que as taxas de conversão dos resíduos celulósicos em glicose são fortemente dependentes da temperatura no processo de polpação alcalina. Os parâmetros cinéticos obtido nos ajustes cinéticos da hidrólise enzimática do BCA para a PACTA, PAC70, PAC90 e PAC120 foram: Vmax (g/h) igual a 7,20; 5,12; 4,54 e 0,87 respectivamente; Km (g) igual a 3,6; 2,56; 2,27 e 2,56 respectivamente; Kcat (h) igual a 1,44; 1,02; 0,91 e 0,17 respectivamente; Km/Vmax igual a 0,5 para todas as amostras e Kcat /Km igual a 0,4 para todas as amostras. / This work, it was proposed to evaluate mixtures of commercial enzymes by supplier Novozymes A / S. The enzymes used in this work were: celulase complex, xylanase, β-glucosidase, enzymático complex, xylanase and β-glucanase and glucoamylase in the glucose production from sugarcane bagasse subjected to treatment with alkali hydroxide solution sodium at room temperature, 70 ° C, 90 ° C and 120 ° C. The BCA yield on a dry basis after treatment with NaOH solution 6 (w / v) were 30.64% ± 1.395 (PACTA), 44.00% ± 1.787 (PAC70), 65.91% ± 1.096 (PAC90), and 95.25% ± 1.461 (CAP 120), respectively. The ash content for the BCA were 2.05% ± 0.027 (PACTA), 0.62% ± 0.013 (PAC70), 0.48% ± 0.007 (PAC90) and 0.18% ± 0.008 (PAC120). The lignin contents were 20.67 ± 0.603 (PACTA), 13.03 ± 0.711 (PAC70), 6.05 ± 0.196 (PAC90) and 5.49 ± 0.151 (PAC120). The results suggest that the conversion rates of cellulosic waste into glucose are strongly dependent on temperature in the alkaline pulping process. The kinetic parameters obtained in kinetic adjustments enzymatic hydrolysis of the BCA for PACTA, PAC70, PAC90 and PAC120 were: Vmax (g/h) equal to 7.20; 5.12; 4.54 and 0.87 respectively; Km (g) equal to 3.6; 2.56; 2.27 and 2.56 respectively; Kcat (h) equal to 1.44; 1.02; 0.91 and 0.17 respectively; Km/Vmax equal to 0.5 for all samples and Kcat/Km of 0.4 for all samples.

Page generated in 0.0438 seconds