• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A 2.4 GHz Ultra-Low-Power Low-Noise-Amplifier

Midtflå, Nils Kåre January 2010 (has links)
In this thesis different aspects of general low power design and LNA-design have been studied. A new architecture for an ultra low power LNA is proposed and simple simulation results are presented. Simulations show that there should be possible to design a 2.4 GHz LNA that works sufficiently at 200 µA. The proposed architecture achieved a voltage gain over 20 dB from 2.32 to 2.5 GHz, a noise figure of 4.65 dB, IIP3 of -15.45 dBm and a input match of -9.5 dB. There is still a lot of work do and many simulations to perform before one can inconclusively conclude that the proposed architecture is a feasible solution, although the results generated in this thesis seem promising.
2

A 2.4 GHz Ultra-Low-Power Low-Noise-Amplifier

Midtflå, Nils Kåre January 2010 (has links)
In this thesis different aspects of general low power design and LNA-design have been studied. A new architecture for an ultra low power LNA is proposed and simple simulation results are presented. Simulations show that there should be possible to design a 2.4 GHz LNA that works sufficiently at 200 µA. The proposed architecture achieved a voltage gain over 20 dB from 2.32 to 2.5 GHz, a noise figure of 4.65 dB, IIP3 of -15.45 dBm and a input match of -9.5 dB. There is still a lot of work do and many simulations to perform before one can inconclusively conclude that the proposed architecture is a feasible solution, although the results generated in this thesis seem promising.

Page generated in 0.4278 seconds