• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mathematical Modelling of a Foil Propulsion System

Eitzen, Fridtjof Camillo January 2012 (has links)
This thesis considers a foil propulsion system on a supply vessel. In analysing the potential of a foil propulsion system, it is imperative to establish a rigid mathematical model. In that respect, modelling of the dynamic system is emphasised, and a comprehensive study is presented on the matter. The equations of motion for an oscillating foil and a vessel are derived, separately. The two systems are then combined, to form the coupled vessel-foil structure. For the vessel, a time-domain model based on Cummins' equation is proposed. Cummins' equation has proven efficient in assessing a unified seakeeping and manoeuvring problem (Fossen [2011]). In line, the vessel-foil system will be exposed to both vessel oscillatory motion due to waves and forward speed effects, i.e seakeeping and manoeuvring. Moreover, the efficiency of the foil is directly dependent on the two.Additionally, aspects of foil control is looked into. In theory, active control could maximise thrust while preventing stall, which would be ideal. The validity of simulations with active control, however, is highly dependent on the accuracy of the emph{basic} vessel-foil model. Consequently, effort has been focused on presenting a rigid mathematical foundation.

Page generated in 0.0834 seconds