• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 8
  • 6
  • 5
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 70
  • 67
  • 42
  • 21
  • 14
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Theoretical and experimental investigation of the heat transfer and pressure drop optimisation on textured heat transfer surfaces

Alfama, Marco January 2017 (has links)
Modern nuclear reactors still use Zirconium-4 Alloy (Zircaloy®) as the cladding material for fuel elements. A substantial amount of research has been done to investigate the boiling heat transfer behind the cooling mechanism of the reactor. Boiling heat transfer is notoriously difficult to quantify in an acceptable manner and many empirical correlations have been derived in order to achieve some semblance of a mathematical model. It is well known that the surface conditions on the heat transfer surface plays a role in the formulation of the heat transfer coefficient but on the other hand it also has an effect on the pressure drop alongside the surface. It is therefore necessary to see whether there might be an optimum surface roughness that maximises heat transfer and still provides acceptably low pressure drop. The purpose of this study was to experimentally measure pressure drop and heat transfer associated with vertical heated tubes surrounded by flowing water in order to produce flow boiling heat transfer. The boiling heat transfer data was used to ascertain what surface roughness range would be best for everyday functioning of nuclear reactors. An experimental set-up was designed and built, which included a removable panel that could be used to secure a variety of rods with different surface roughnesses. The pressure drop, surface temperature, flow rate and heat input measurements were taken and captured in order to analyse the heat transfer and friction factors. Four rods were manufactured with different roughnesses along with a fifth rod, which remained standard. These rods were tested in the flow loop with water in the upward flow direction. Three different system mass flow rates were used: 0kg/s, 3.2kg/s and 6.4kg/s. Six repetitions were done on each rod for the tests; the first repetition was not used in the results since it served the purpose to deaerate the water in the flow loop. The full range of the power input was used for each repetition in the tests. For the heat transfer coefficient at a system mass flow rate of 3.2kg/s, satisfactory comparisons were made between the test results and those found in literature with an average deviation of 14.53%. At 6.4kg/s system mass flow rate the comparisons deviated on average 55.45%. The velocity of the fluid in the test section was calculated from the pressure drop and was validated using separate tests. The plain rod, with no added roughness, was found to be the optimal surface roughness which is what is used in industry today. The flow loop was in need of a couple of redesigns in order to produce more accurate results. Future work suggestions include adding more rods in the test section in order to investigate the nature of heat transfer in a rod bundle array as well as implementing all the suggested changes listed in the conclusion. / Dissertation (MEng)--University of Pretoria, 2017. / Mechanical and Aeronautical Engineering / MEng / Unrestricted
32

Computational Modeling of Bubble Growth Dynamics in Nucleate Pool Boiling for Pure Water and Aqueous Surfactant Solutions

Romanchuk, Bradley J. 13 October 2014 (has links)
No description available.
33

Initiation of subcooled pool boiling during pressure transients

Schmidt, Don. January 1985 (has links)
Call number: LD2668 .T4 1985 S337 / Master of Science
34

Efeito da geometria na ebulição nucleada de refrigerantes halogenados em tubos horizontais / Geometry effects in nucleate boiling of halocarbon refrigerants in horizontal tubes

Silva, Evandro Fockink da 16 September 2005 (has links)
O presente estudo envolve a análise teórico-experimental da transferência de calor através do mecanismo de ebulição em um único tubo e em banco com três tubos horizontais. A análise da literatura permitiu levantar os parâmetros que podem influenciar o coeficiente de transferência de calor na ebulição em banco de tubos e algumas correlações. O aparato experimental foi adaptado para realização de ensaios envolvendo refrigerantes halogenados, 3 tubos dispostos em fileiras paralelas e 3 distintos diâmetros. Nos experimentos foram utilizados os refrigerantes R-11, R-123 (baixa pressão) e R-134a (média pressão), tubos de latão aquecidos internamente com resistências elétricas, com fluxo de calor específico variando entre 1 e 40 kW/'M POT.2'. Através dos resultados foram observados alguns comportamentos inéditos na influência do acabamento superficial e em banco de tubos. Com base no banco de dados levantado, foi desenvolvida uma correlação para o coeficiente de transferência de calor em ebulição em banco de tubos. Os resultados obtidos por esta correlação apresentaram reduzidos desvios em relação aos experimentais. / The research reported herein is a theoretical and experimental investigation of nucleate boiling heat transfer in an isolated tube and a row of three horizontal tubes. The literature review provided enough information to raise the intervening physical parameters and several correlations. The experimental bench has been developed and adapted to perform experiments with several refrigerants, three different tube diameters, and to accommodate a row of three parallel tubes. The experiments have been carried out with refrigerants R-11, R-123 and R-134a. Heating of the brass tubes has been provided by tubular electrical heaters inserted inside the tubes. The heat flux varied from 1 to 40 kW/'M POT.2'. Experiments have been carried out by successively heating two and three tubes. Effects of boiling in tubes underneath (lower level) have been investigated. Finally a correlation for the heat transfer coefficient in successive tubes of a tube bank has been developed. The correlation presents good accuracy with respect to data from the present investigation.
35

Multiscale Modeling Of Thin Films In Direct Numerical Simulations Of Multiphase Flows.

Thomas, Siju 05 May 2009 (has links)
Direct numerical simulations, where both the large and small scales in the flow are fully resolved, provide an excellent instrument to validate multiphase flow processes and also further our understanding of it. Three multiphase systems are studied using a finite difference/front-tracking method developed for direct numerical simulations of time-dependent system¬¬s. The purpose of these studies is to demonstrate the benefit in developing accurate sub-grid models that can be coupled with the direct numerical simulations to reduce the computational time. The primary reason to use the models is that the systems under consideration are sufficiently large that resolving the smallest scales is impractical. The processes that are examined are: (1) droplet motion and impact (2) nucleate boiling and (3) convective mass transfer. For droplet impact on solid walls and thin liquid films, the splash characteristics are studied. The collision of a fluid drop with a wall is examined and a multiscale approach is developed to compute the flow in the film between the drop and the wall. By using a semi-analytical model for the flow in the film we capture the evolution of films thinner than the grid spacing reasonably well. In the nucleate boiling simulations, the growth of a single vapor from a nucleation site and its associated dynamics are studied. The challenge here is the accurate representation of the nucleation site and the small-scale motion near the wall. To capture the evaporation of the microlayer left behind as the base of the bubble expands we use a semi-analytical model that is solved concurrently with the rest of the simulations. The heat transfer from the heated wall, the evolution of the bubble size and the departure diameter are evaluated and compared with the existing numerical results. The mass transfer near the interface, without fully resolving the layer by refining the grid is accommodated by using a boundary layer approximation to capture it. The behavior of the concentration profile is taken to be self-similar. A collection of potential profiles is tested and the accuracy of each of these models is compared with the full simulations.
36

Simultaneous boiling and spreading of liquefied petroleum gas on water

Chang, Hsueh-Rong January 1981 (has links)
Thesis (Sc.D.)--Massachusetts Institute of Technology, Dept. of Chemical Engineering, 1981. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND SCIENCE. / Bibliography: leaves 333-336. / by Hsueh-Rong Chang. / Sc.D.
37

Influence of Heater Orientation on Fluctuations in Steady-state Nucleate Boiling

Osborne, William F. 03 November 1995 (has links)
In observations of steady-state nucleate boiling, fluctuations in the temperature and heat flux might initially appear to be completely random. However, it was shown that, for a vertically mounted platinum wire in liquid nitrogen, the fluctuations about the steady-state exhibit an average counterclockwise circulation when the heat flux is plotted versus the superheat temperature. An area associated with the average circulation was proposed as a numerical measure of stability for steady-state nucleate boiling. The mechanisms for the generation of these fluctuations are thought to be the feedback of the bubbles rising past the wire and the differential heating and cooling that this engenders. Data similar to the data on the vertical wire have been obtained using the same wire mounted horizontally. Although the counterclockwise circulation mentioned above is still seen, the measure of stability as proposed earlier, is less useful for prediction of the transition to film boiling. This reduced sensitivity can be attributed to the fact that the possibility of feedback through the rising bubbles has been eliminated.
38

Heater Geometry and Heat Flux Effects On Subcooled, Thin Wire, Nucleate Pool Boiling In Microgravity

Munro, Troy 01 May 2012 (has links)
Nucleate boiling is widely used as a means of heat transfer in thermal management systems because of its high heat transfer rates. This study explored the effects of heat flux and surface geometry on heat transfer behavior and bubble dynamics of nucleate pool boiling in microgravity. A single platinum wire, a twist of three platinum wires, and a twist of four platinum wires were used as boiling surfaces for two separate experiments performed in microgravity on board NASA’s parabolic flight aircraft. Wire temperature, thermocouple, and video measurements were taken during a total of 44 microgravity parabolas. Results show that the crevices formed by wire twisting provide regions of localized superheating and are able to reduce the heat flux necessary for boiling onset to occur. This localized heating results in a lower average heater temperature and shortened superheating periods, but this effect decreases when more wires are present in the twist. This behavior was investigated and confirmed with a finite volume, transient conduction model. This model also showed that the water temperature profile at the bubble onset indicates that water at a certain distance from the wire surface, in this experiment 50 μm, needs to be heated to above saturation temperature in order to initiate and generate a burst of bubbles. A relative bubble area analysis method was able to quantify vapor production and bubble behavior across multiple frames of video. Application of this method revealed a transition of bubble behavior from large isolated bubbles to jet flows of small bubbles, and this method allowed the heat flux contribution of jet flows to be approximated. Additionally, a new mode of jet flows was observed. Particle image velocimetry was used to provide approximate velocities of small bubble jet flows and their influence on heat transfer to the bulk fluid.
39

Solution Structure Studies on the Effects of Aromatic Interactions and Cross-Strand Disulfide Bonds on Protein Folding

Balakrishnan, Swati January 2017 (has links) (PDF)
The work presented in this thesis focusses primarily on the determination of protein structure at atomic resolution, with NMR spectroscopy as the principle investigative tool. The thesis is divided into four parts. Part I consists of Chapter 1 which provides an introduction to protein structure, folding and NMR spectroscopy. Part II, consisting of Chapters 2 and 3, describes the effects of aromatic interactions on nucleating structure in disordered regions of proteins, using variants of apo-cytochrome b5 as a model system. Part III consists of Chapter 4, which describes structural effects of introducing cross-strand disulfide bonds using variants of Thioredoxin. Part IV of this thesis consists of the Appendices A, B and C. Appendix A describes the purification and characterization of ilvM, the regulatory subunit of the E.coli enzyme AHAS II. Appendices B and C contain chemical shift information corresponding to Chapter 3 and Chapter 4 respectively. Part I : Introduction to protein structure, folding and solution structure studies Chapter 1 first gives a brief overview of protein structure followed by an introduction to protein folding, focussing on the forces involved in determining the final three-dimensional shape of the protein as well as the experimental and computational techniques involved in studying or predicting the fold of a given protein. The second section of this chapter details the methodology followed to obtain solution structures of proteins using NMR spectroscopy. Part II : Engineering aromatic interactions to nucleate folding in intrinsically disordered regions of proteins Chapter 2 describes site-specific mutagenesis, recombinant over-expression, purifica-tion and preliminary biophysical characterization of two aromatic mutants of the molten globule apo-cytochrome b5 (apocytb5) : H43F H67F cytochrome b5 (FFcytb5) and H43W H67F cytochrome b5 (WFcytb5). Analysis of the structure of wild-type apo - cytochrome b5 was done to introduce surface mutations and avoid perturbation of the interior pack-ing of the protein. The bacterial host E.coli BL21(DE3) was used for recombinant over-expression, and both mutant proteins were purified by anion-exchange chromatography followed by size-exclusion chromatography. Biophysical studies show a decrease in the hydrodynamic radii and surface hydropho-bicity of FFcytb5 and WFcytb5 compared to wt -apo cytb5. An increase in protein stability was also seen from the wt apocytb5 to WFcytb5 and FFcytb5 in the presence of the chemical denaturant Urea. Proton 1D NMR spectra exhibited sharp lines and good spectral dispersion in the amide region, indicating that both mutant proteins are well folded. In addition, conservation of two distinctive up field and downfield shifted resonances present in apocytb5 indicated that structural changes upon mutation accrued on the upon the scaffold of apocytb5. Chapter 3 describes solution structure studies to determine secondary and tertiary structure of FFcytb5 and WFcytb5. Structural studies were carried out using homonu-clear and heteronuclear NMR methods, for which isotopically enriched 15N- and 13C, 15N samples were prepared for each protein. Additionally a 2H, 13C, 15N ILV methyl labeled sample was prepared for FFcytb5 to obtain unambiguous NOE correlation data. The hydrogen bond network for WFcytb5 was determined using hydrogen/deuterium exchange data. The restraints required to define the orientations and interactions of the aromatic groups were obtained from 15N-edited NOESY HSQC, 13C -edited NOESY HSQC and 2D 1H - 1H NOE spectra. These correlations were crucial in determining the aromatic interactions present within each protein. The structure of FFcytb5 was calculated using 1163 NOE distance restraints, 179 φ and ψ dihedral angle restraints, along with 40 hydrogen bond restraints. Similarly the structure of WFcytb5 was calculated using 1282 NOE distance restraints, 177 φ and ψ dihedral angle restraints and 40 hydrogen bond restraints. The ensemble of structures obtained for FFcytb5 showed a root mean square deviation of 1.01±0.21 Å . The ensemble of structures obtained for WFcytb5 showed a root mean square deviation of 0.58±0.09 Å . In both cases, ≈ 80% of backbone dihedral angles were found to be in the allowed regions and ≈ 20% in the additionally allowed regions of the Ramachandran map. The final tertiary structure of both FFcytb5 and WFcytb5 consisted of a mixed four strand β -sheet with a four helix bundle resting on top and were seen to align well, with an RMSD of 0.6 Å. A comparison of the solution structures of apocytb5 with FFcytb5 and WFcytb5 convincingly showed the nucleation secondary and tertiary structure well beyond the site of mutation. The presence of aromatic trimers, non-canonical in context of the wt apoc-ytb5, was confirmed upon analysis of the structures of FFcytb5 and WFcytb5, with NOE correlations assigned to verify these interactions. The reduction in the hydrodynamic radii of FFcytb5 and WFcytb5 in relation to apocytb5 was also verified from tsuperscript15N-NMR relaxometry studies. The nucleation of long-range structure using aromatic interactions has been demonstrated in proteins for the first time, and can in principle be used to incorporate aromatic residues and interactions in protein design. Structural data, chemical shift data and restraints lists used for structure calculation of WFcytb5 and FFcytb5 were deposited with the PDB (accession numbers 5XE4 and 5XEE) and BMRB(accession numbers 36070, 36071) respectively1. Part III : Structural consequences of introducing disulfide bonds into β - sheets Chapter 3 describes the solution structure studies on two mutants of E.coli Thiore-doxin which were designed to incorporate a disulfide bond between two anti-parallel β-strands at the edge of the β-sheet. One mutant was designed with a disulfide bond at the hydrogen bonding position (HB, 78c90cTrx) and the other with the disulfide bond at the non-hydrogen bonding position (NHB, 77c91cTrx). Here we study the structural changes that accompany the introduction of a cross-strand disulfide and whether such structural changes could be correlated with the previously seen thermodynamic and catalytic changes. Solution structure studies were conducted using a suite of multidimensional heteronu-clear NMR experiments, for which isotopically enriched 15N and 13C, 15N labelled samples were used. The solution structure for 77c91cTrx was calculated using 1190 NOE distance restraints, 199 φ and ψ dihedral angle restraints and 48 hydrogen bond restraints. The solution structure for 78c90cTrx was calculated using 1123 NOE distance restraints, 197 φ and ψ dihedral angle restraints and 50 hydrogen bond restraints. The ensemble of structures for 77c91cTrx showed an RMSD of 0.78± 0.13 Å while the RMSD for the ensemble of structures of 78c90cTrx was seen to be 0.76±0.09 Å . In both cases, ≈ 80% of backbone dihedral angles were seen to be in the allowed regions and ≈ 20% in the additionally allowed regions of the Ramachandran map. The tertiary structures of both proteins were seen to have a 5-strand mixed β-sheet and 4 helices surrounding it. . A comparison of the solution structures of mutant and wt -Trx showed significant changes in secondary and tertiary structure. For example, an α helix was reduced from 3 turns to a single turn, and of the β-strands containing the mutation was elongated by 3 residues. A ≈ 50% loss of hydrogen bonds, primarily from the β -sheet, was seen for both mutants. The secondary and tertiary structure for both 77c91cTrx and 78c90cTrx was seen to be near identical, despite the greater strain of the disulfide bond at the hydrogen bonding position. In addition to this, the Ile75-Pro76 peptide bond is now seen to be in the trans conformation in 78c90cTrx, while in wt -Trx the Ile75-Pro76 peptide bond is in the cis conformation. This cis peptide bond is known to play a role in both folding and catalysis, and the solution structures were analyzed in the context of observed changes in folding and catalysis. The study shows that introducing disulfide bonds even at the edge of β sheets have long-range structural effects, and the structural effects cannot be directly correlated with the changes in stability. Part III: Appendix Appendix A describes the expression, purification and preliminary characterization of ilvM, the regulatory subunit of E.coliAHAS II, one of three enzyme isomers that catal-yse the first step in the synthesis of all branched chain amino acids. AHAS II is known to be insensitive to feedback regulation, but our studies showed that the presence of Ile, Leu and Val causes structural changes and increases the stability of ilvM. However we were not able to purify ilvM in sufficient quantities to proceed with solution structure studies. Appendices B and C contain chemical shift information for the structural studies carried out on FFcytb5, WFcytb5, 77c91cTrx and 78c90cTrx.
40

Efeito das superfícies nano e micro estruturadas sobre a ebulição nucleada / Effect of nano and micro structured surfaces on the nucleate boiling

Kiyomura, Igor Seicho [UNESP] 29 July 2016 (has links)
Submitted by IGOR SEICHO KIYOMURA null (igorseicho@gmail.com) on 2016-09-12T14:07:49Z No. of bitstreams: 1 Dissertação_Igor Seicho Kiyomura.pdf: 3224196 bytes, checksum: d71f4ad45145d3dc7f441a0090d3b373 (MD5) / Approved for entry into archive by Felipe Augusto Arakaki (arakaki@reitoria.unesp.br) on 2016-09-14T19:13:44Z (GMT) No. of bitstreams: 1 kiyomura_is_me_ilha.pdf: 3224196 bytes, checksum: d71f4ad45145d3dc7f441a0090d3b373 (MD5) / Made available in DSpace on 2016-09-14T19:13:44Z (GMT). No. of bitstreams: 1 kiyomura_is_me_ilha.pdf: 3224196 bytes, checksum: d71f4ad45145d3dc7f441a0090d3b373 (MD5) Previous issue date: 2016-07-29 / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Nas últimas décadas surgiu a necessidade de dissipar maiores quantidades de energia térmica, fato que acarretou no aumento do número de estudos em ebulição nucleada e convectiva com o objetivo de produzir trocadores de calor cada vez mais eficientes e compactos. A busca de produtos cada vez mais eficientes e compactos e a procura de novas técnicas para melhorar a transferência de calor, garantindo a integridade física do equipamento, continuam crescendo e a tendência é que continuará assim nos próximos anos. Uma das técnicas que está sendo amplamente pesquisada na comunidade cientifica é o uso de nanofluidos. Os nanofluidos foram desenvolvidos com o intuito de melhorar a condutividade e a difusividade térmica em relação aos fluidos tradicionais. Muitos experimentos com nanofluidos têm sido desenvolvidos nos últimos anos, mas ainda existem muitas divergências a respeito do efeito desses fluidos sobre o fenômeno de ebulição. Dentro deste contexto, o presente trabalho tem como objetivo a análise teórico-experimental do efeito de superfícies nanoestruturadas e da concentração do nanofluido, a ser depositado sobre a superfície aquecedora, sobre o coeficiente de transferência de calor em regime de ebulição nucleada. Para tanto, testes foram realizados para fluxos de calor que correspondem ao regime de ebulição nucleada da água deionizada, à temperatura de saturação (Tsat = 99 °C) e à pressão atmosférica (patm = 98 kPa), sobre superfícies aquecedoras de cobre com diferentes rugosidades. As superfícies nanoestruturadas foram produzidas por deposição de nanopartículas de maguemita, por meio do processo de ebulição da solução Fe2O3-água deionizada para diferentes concentrações mássicas previamente estabelecidas. As superfícies foram submetidas a ensaios metalográficos, de molhabilidade e de rugosidade permitindo a avaliação das modificações estruturais, topográficas e químicas das superfícies, antes e após os testes no regime de ebulição nucleada. Os resultados para o coeficiente de transferência de calor foram relacionados com as características geométricas e morfológicas das superfícies de teste, levando em consideração os aspectos relacionados à interação fluido/superfície, como, o ângulo de contato e a molhabilidade. / In the last decade, the necessity to dissipate large quantities of heat energy increased, thus leading to an increase on the number of studies in nucleate pool boiling and flow boiling with the aim of producing more compact and efficient heat exchangers. The search for increasingly efficient and compact products and for new techniques to improve the heat transfer, ensuring the physical integrity of the equipment, keep growing and it will remain so in the next years. One of the techniques being widely researched in the scientific community is the use of nanofluids. The nanofluids have been developed in order to improve the thermal conductivity and diffusivity compared to traditional fluids. Although many experiments with nanofluids have been developed in recent years, there are still many differences related to the effects of these fluids on the pool boiling phenomenon. In this context, this work aims to analyze the effects of nanostructured surfaces and different nanofluid concentrations, which are deposited on the heating surface, on the heat transfer coefficient during the nucleate boiling regime. Therefore, tests were performed to heat fluxes values corresponding to the nucleate boiling regime for deionized water, at saturation temperature (Tsat = 99 °C) and atmospheric pressure (patm = 98 kPa), on copper heating surfaces with different roughness values. The nanostructured surfaces were produced by maghemite nanoparticle deposition, which is achieved by boiling selected mass concentrations of a Fe2O3-deionized water nanofluid. Prior and after each boiling test, the characteristics of the test surfaces were evaluated by applying the metallographic, wettability and surface roughness tests. The results for the heat transfer coefficient were related to the geometrical and morphological characteristics of the test surfaces, taking into account the aspects of the flu-id/surface interaction such as, the contact angle and wettability. / FAPESP: 2014/07949-9

Page generated in 0.0543 seconds