Spelling suggestions: "subject:"nucleation"" "subject:"nucleated""
1 |
The role of nucleating agents on flow-induced crystallisation of polymersInvigorito, Carmine January 2012 (has links)
Isotactic polypropylene (iPP) is one of the widely used commercial thermoplastics. Physical properties of iPP can be tailored to the requirements with respect to structure, microstructure and processing, thus research continues in the development and modification of the polymer. With the advancement of chemistry, as our understanding in tailoring of the molecular structure has enhanced, iPP has become more of a generic name.
|
2 |
Heterogeneous crystallisation of polyethylene terephthalate : a study of the influence of organic and inorganic additives on the rate of crystallisation of polyethylene terephthalate and the subsequent changes in morphology and mechanical propertiesIbbotson, C. January 1976 (has links)
The effect of various inorganic and organic additives as possible nucleating agents on the crystallisation behaviour of P. E. T. and the suosequent influence on the morphological and mechanical properties has been examined. Various methods of mixing(: the polymer and additive were investigated and a method involving the screw-Extrusion of the polymer and the additive was ultimately adopted. Crystallisation studies were carried out using differential scanning calorimetry under dynamic and isothermal modes. The results produced under conditions of isothermal crystallisation were analysed by means of a computer. Despite differences between batches of polymer all the additives with the exception of indigo produced a nucleating effect in the polymer as indicated by an increase in the rate of crystallisation compared with that of the base polymer. Two organo-metallic substances (sodium benzoate and sodium stearate) proved to be the most effective in this respect by decreasing the degree of supercooling of the polymer by 20 [degrees]. Morphological studies were carried out on isothermally crystallised samples, after etching and replication using a transmission electron microscope. A nodular structure whose dimensions were sensitive to both the nucleating agent and the temperature of crystallisation was observed. Mechanical testing of samples direct from the D. S. C. was carried out using a compression method. The breaking loads were found to vary with both the type of nucleating agent used and the crystallisation temperature chosen. A separate study involving the exanination of the resulting fracture surfaces by scanning electron microscopy revealed that a, high breaking load was associated with a fine discontinuous structure whereas lower breaking loads were characterised by a more continuous linear appearance. This implies a higher energy of fracture due to the increased surface area of the fracture surface of the former.
|
3 |
Nucleating Agent-Assisted Preparation of Polypropylene (PP)/Polyhedral Oligomeric Silsesquioxane (POSS) Nanocomposites and Their CharacterizationLee, Byoung-Jo 01 September 2009 (has links)
No description available.
|
4 |
Heterogeneous crystallisation of polyethylene terephthalate. A study of the influence of organic and inorganic additives on the rate of crystallisation of polyethylene terephthalate and the subsequent changes in morphology and mechanical properties.Ibbotson, C. January 1976 (has links)
The effect of various inorganic and organic additives as possible
nucleating agents on the crystallisation behaviour of P. E. T. and the
suosequent influence on the morphological and mechanical properties
has been examined. Various methods of mixing(: the polymer and
additive were investigated and a method involving the screw-Extrusion
of the polymer and the additive was ultimately adopted. Crystallisation
studies were carried out using differential scanning calorimetry under
dynamic and isothermal modes. The results produced under conditions
of isothermal crystallisation were analysed by means of a computer.
Despite differences between batches of polymer all the additives
with the exception of indigo produced a nucleating effect in the polymer
as indicated by an increase in the rate of crystallisation compared
with that of the base polymer. Two organo-metallic substances
(sodium benzoate and sodium stearate) proved to be the most effective
in this respect by decreasing the degree of supercooling of the polymer
by 20 [degrees].
Morphological studies were carried out on isothermally crystallised
samples, after etching and replication using a transmission electron
microscope. A nodular structure whose dimensions were sensitive to
both the nucleating agent and the temperature of crystallisation was
observed.
Mechanical testing of samples direct from the D. S. C. was carried
out using a compression method. The breaking loads were found to
vary with both the type of nucleating agent used and the
crystallisation temperature chosen. A separate study involving the
exanination of the resulting fracture surfaces by scanning electron
microscopy revealed that a, high breaking load was associated with a
fine discontinuous structure whereas lower breaking loads were
characterised by a more continuous linear appearance. This implies
a higher energy of fracture due to the increased surface area of
the fracture surface of the former.
|
5 |
Estudo do efeito da adição de Fe2O3 no processo de cristalização volumétrica de um vidro de diopsídio de composição CaO.MgO.2SiO2 / Study of the effect of Fe2O3 addition on the crystallization process of a diopside glass composition CaO.MgO.2SiO2Bayer, Paulo Sérgio 04 July 2018 (has links)
Vitrocerâmicas contendo cristais de diopsídio (CaMgSi2O6 = CMS2) têm sido consideradas promissoras para diferentes aplicações. Entretanto, quando tratado termicamente, o vidro de diopsídio exibe somente cristalização superficial. Uma maneira de se obter cristalização no volume neste vidro é através da adição de agentes nucleantes em sua composição. O objetivo inicial desta tese de doutorado foi verificar a eficiência da adição dos compostos TiO2, ZrO2 e Fe2O3, como agentes nucleantes no processo de cristalização volumétrica no vidro de diopsídio. Os vidros foram obtidos pelo método de fusão-resfriamento e, em seguida, foram submetidos a um tratamento térmico de nucleação e crescimento de cristais. Os resultados mostraram que somente a adição de Fe2O3 acima de 7% molar ao vidro CMS2 favorece a cristalização no interior da amostra. O vidro contendo 9 mol% de Fe2O3 apresenta como característica principal uma distribuição homogênea de cristais no volume da amostra vítrea. As fases cristalinas originadas foram caracterizadas por Difratometria de Raios X e o mecanismo de nucleação de cristais foi estudado através do método de Análise Térmica Diferencial (ATD) e análise microestrutural quantitativa de amostras submetidas aos seguintes ciclos de tratamento isotérmico: i) dois estágios (o primeiro de nucleação e o segundo de crescimento de cristais) e ii) um único estágio de nucleação e crescimento de cristais. As amostras contendo 9 mol% de Fe2O3 apresentaram somente a fase cristalina diopsídio com os íons de ferro aparentemente incorporados em sua rede cristalina. Através da análise dos dados de ATD em regime isotérmico da amostra contendo 9 mol% de óxido de ferro foi possível determinar o valor médio do coeficiente de Avrami (n) como sendo próximo a 3,0 para temperaturas de 760, 770, 780 e 790 °C. De acordo com a literatura, estes valores de n indicam que o vidro CMS2 contendo 9 mol% de Fe2O3 exibe um mecanismo de cristalização volumétrica caracterizado pelo aumento e saturação do número de núcleos de cristais tridimensionais de diopsídio férrico e por um mecanismo de crescimento de cristais controlado por interface. Além disso, os resultados do método de microscopia para os dados experimentais correspondentes ao tratamento térmico de simples estágio mostraram que o mecanismo de cristalização volumétrica do vidro CMS2 9F é descrito pelo caso mais geral da equação de KJMAY, onde as taxas de nucleação e de crescimento são dependentes do tempo e podem variar ao longo do processo de cristalização isotérmica. / Glass-ceramics containing diopside crystals (CaMgSi2O6 = CMS2) have been considered promising for different applications. However, when thermally treated, diopside glass exhibits only surface crystallization. One way of obtaining volume crystallization in this glass is by the addition of nucleating agents in its composition. The initial objective of this PhD thesis was to verify the efficiency of the addition of the TiO2, ZrO2 and Fe2O3 compounds as nucleating agents in the process of volume crystallization in diopside glass. Glasses were obtained by the melt-cooling method and were then subjected to a nucleation and crystal growth heat treatment. The results showed that only the addition of Fe2O3 above 7 mol% to the CMS2 glass favors crystallization in the sample volume. Glass containing 9 mol% Fe2O3 has as main characteristics a homogeneous distribution of crystals in the sample volume. The crystalline phases originated were characterized by X-ray diffraction and the crystal nucleation mechanism was studied through the Differential Thermal Analysis (DTA) method and quantitative microstructural analysis of samples submitted to double - and single - stage thermal treatments. The samples containing 9 mol% of Fe2O3 presented only the ferric diopside crystalline phase with the iron atom apparently incorporated in its crystalline network. By analyzing the DTA data in the isothermal regime of the sample containing 9 mol% of iron oxide, it was possible to determine the average value of the Avrami coefficient (n) as being near to 3.0 for temperatures of 760, 770, 780 and 790 oC. According to the literature, these values of n indicate that CMS2 glass containing 9 mol% Fe2O3 exhibits a volume crystallization mechanism characterized by increase and saturation of the number of nuclei and an interface-controlled growth of ferric diopside three-dimensional crystals. In addition, the results of the microscopy method for the experimental data corresponding to the single-stage heat treatment showed that the CMS2 9F glass volume nucleation mechanism is described by the more general case of the KJMAY equation, where the rates of nucleation and growth are time dependent and can vary throughout the isothermal crystallization process.
|
6 |
Cristalização de um vidro de basalto. / Crystallization of a basalt glass.Sánchez González, Adriana Maria 10 December 2013 (has links)
Os materiais vitrocerâmicos de basalto representam uma importante família de vitrocerâmicos. Sendo que um dos desempenhos técnicos exigidos atualmente é o efeito anti-desgaste dos materiais, as vitrocerâmicas de basalto cobrem essa necessidade e têm uma aplicação direta por suas boas propriedades mecânicas e anti-abrasivas, além da vantagem que têm as rochas basálticas quanto à baixa temperatura de fusão e maior fluidez do fundido, o que as torna mais adequadas para o processamento cerâmico. No presente trabalho, rejeitos da mineração de rocha basáltica da região de Campinas, São Paulo, foram fundidos em escala laboratorial em forno elétrico a 1350°C, usando cadinhos de alta alumina, para a obtenção de uma primeira série de amostras de vidro. Mais uma série foi obtida, realizando a fusão da matéria-prima com adição de 0,5% em massa de Cr2O3 como agente de nucleação. Os vidros foram tratados termicamente à máxima temperatura de cristalização como sendo 880°C e 820°C durante 5, 10, 20, 30 e 60 minutos e 5, 20 e 60 minutos respectivamente. A evolução das fases cristalinas foi acompanhada por análise de densidade (método de Arquimedes) e difração de raios X (DRX). Foi realizada a medição da microdureza Vickers e resistência à micro-abrasão, e o vidro cristalizado observou-se por microscopia eletrônica de varredura (MEV). Os vidros da primeira série foram também moídos, até tamanhos de partícula ASTM 80 e ASTM 325, para avaliar sua capacidade de cristalização como pó de vidro. Eles foram caracterizados mediante DRX e MEV. / Basalt glass-ceramics represent one of the most important family of glass-ceramics. The wear resistant, is now the technical performance requirement in material, basalt glass-ceramics cover that need and have a direct application for their good mechanical and anti-abrasive properties. In addition, the basaltic rocks have the advantage of a low melt temperature and higher fluidity melt. In this paper, a mining waste of basaltic rock from the city of Campinas, São Paulo, was melted in laboratory scale, in an electric furnace at 1350°C, in high-alumina crucibles, to obtain the first series of basalt glass samples. Other series was obtained by melting of the raw material with addition of 0,5% wt. of Cr2O3 as a nucleating agent. The glasses were heat treated at the maximum crystallization temperature: 880oC during 5, 10, 20, 30, and 60 minutes and 820°C during 5, 20 and 60 minutes, respectively. The evolution of the crystalline phases was accompanied by density and X-ray diffraction (XRD) analyses. Vickers hardness and micro-abrasion resistance of the samples were also carried out, and the crystallized glasses were observed in a scanning electron microscope (SEM). The first series of glasses were also milled, until particle sizes ASTM 80 e ASTM 325, for the evaluation of their ability to crystallization as glass powder. They were characterized by XRD and SEM.
|
7 |
Tetrahydrofuran Hydrate Inhibitors: Ice-Associating Bacteria and ProteinsHuva, Emily 31 March 2009 (has links)
Ice-associating proteins (IAPs) are proteins that interact directly with ice crystals, either by offering a site for nucleation, i.e. ice nucleating proteins (INPs), or by binding to nascent crystals to prevent addition of more water molecules, i.e. antifreeze proteins (AFPs). AFPs have been found to inhibit the formation of clathrate-hydrates, ice-like crystalline solids composed of water-encaged guest molecules. Study of AFP-hydrate interaction is leading to a greater understanding of AFP adsorption and of the mechanism behind the “memory effect” in hydrates, wherein previously frozen crystals reform more quickly after a brief melt. AFP is currently the only known memory inhibitor. Such a low-dosage hydrate inhibitor (LDHI) is of great interest to the oil and gas industry, as hydrate formation and reformation in the field is a huge problem. Bacterial AFPs, though largely uncharacterized, may be the best candidates for large-scale production of hydrate inhibitors, given the difficulties in obtaining AFP from other sources.
The popular kinetic inhibitors (KIs) polyvinylpyrrolidone (PVP) and polyvinylcaprolactam (PVCap) were used for points of comparison in experiments exploring the hydrate-inhibition activity of several ice-associating bacteria and proteins. The addition of the soil microbe, Chryseobacterium, increased the average lag-time to tetrahydrofuran (THF) hydrate formation by 14-fold, comparable to PVP or PVCap. Samples containing Pseudomonas putida, a bacterium having both ice-nucleation protein (INP) and AFP activity, had lag-times double that of the control. Solutions with P. putida and Chryseobacterium sometimes formed hydrate slurries of stunted crystal nuclei instead of solid crystals. No inhibition of memory or nucleation was noted in bacterial assays, however bacteria with INP activity was linked to unusually rapid memory reformation. Quartz crystal microbalance experiments with dissipation (QCM-D) showed that a tight adsorption to SiO2 and resistance to rinsing are correlated with a molecule’s inhibition of hydrate formation and reformation. These results support a heterogeneous nucleation model of the memory effect, and point to the affinity of AFP for heterogeneous nucleating particles as an important component of memory inhibition. / Thesis (Master, Biology) -- Queen's University, 2008-05-30 15:20:38.749
|
8 |
The function, characterization of expression, localization and activity of a divergent ice nucleating protein from Pseudomonas borealisVanderveer, Tara Lynn 15 May 2012 (has links)
An ice nucleating protein (INP) with 66% amino acid sequence identity to the better-known INP of Pseudomonas syringae has been described in an environmental isolate of P. borealis and designated InaPb. Despite the fact that INPs are classified as ice-binding proteins, InaPb showed little affinity for pre-formed ice and showed incorporation rates similar to Ina- strains. Additionally, it appeared to lack in the ability to shape ice or limit its growth. However, it was an effective ice nucleator. Using the coding sequence for InaPb and a green fluorescent protein tag (GFP), an InaPb-GFP fusion protein construct was inserted into a broad host expression vector in order to visualize the expression and localization of the protein in E. coli and an Ina- strain of P.syringae. The InaPb-GFP protein appears to localize at the poles of E. coli, but the nucleation temperature for these cells was only marginally above -9°C, which indicated poor nucleation activity. When expressed in Ina- P. syringae, the proteins showed clustering throughout the cell and an increased ability to nucleate ice following cold conditioning. The ability to nucleate ice was further increased by the removal of the GFP tag resulting in an average nucleation temperature more consistent with that seen in the native host P. borealis. Since inaPb transcript levels did not appear to change after cold conditioning, the clustering seen using fluorescence microscopy was likely the result of increased aggregation of protein in the membrane. Most INP-
producing bacteria are associated with plant disease, but experiments with P. borealis suggested that the Ina+ phenotype was not indicative of pathogenicity in this strain. It is hoped that my contribution to the functional characterization of this INP will lead to a better understanding of these special proteins and their importance to the handful of bacteria that exhibit this activity. / Thesis (Master, Biology) -- Queen's University, 2012-05-15 09:55:52.506
|
9 |
Cristalização de um vidro de basalto. / Crystallization of a basalt glass.Adriana Maria Sánchez González 10 December 2013 (has links)
Os materiais vitrocerâmicos de basalto representam uma importante família de vitrocerâmicos. Sendo que um dos desempenhos técnicos exigidos atualmente é o efeito anti-desgaste dos materiais, as vitrocerâmicas de basalto cobrem essa necessidade e têm uma aplicação direta por suas boas propriedades mecânicas e anti-abrasivas, além da vantagem que têm as rochas basálticas quanto à baixa temperatura de fusão e maior fluidez do fundido, o que as torna mais adequadas para o processamento cerâmico. No presente trabalho, rejeitos da mineração de rocha basáltica da região de Campinas, São Paulo, foram fundidos em escala laboratorial em forno elétrico a 1350°C, usando cadinhos de alta alumina, para a obtenção de uma primeira série de amostras de vidro. Mais uma série foi obtida, realizando a fusão da matéria-prima com adição de 0,5% em massa de Cr2O3 como agente de nucleação. Os vidros foram tratados termicamente à máxima temperatura de cristalização como sendo 880°C e 820°C durante 5, 10, 20, 30 e 60 minutos e 5, 20 e 60 minutos respectivamente. A evolução das fases cristalinas foi acompanhada por análise de densidade (método de Arquimedes) e difração de raios X (DRX). Foi realizada a medição da microdureza Vickers e resistência à micro-abrasão, e o vidro cristalizado observou-se por microscopia eletrônica de varredura (MEV). Os vidros da primeira série foram também moídos, até tamanhos de partícula ASTM 80 e ASTM 325, para avaliar sua capacidade de cristalização como pó de vidro. Eles foram caracterizados mediante DRX e MEV. / Basalt glass-ceramics represent one of the most important family of glass-ceramics. The wear resistant, is now the technical performance requirement in material, basalt glass-ceramics cover that need and have a direct application for their good mechanical and anti-abrasive properties. In addition, the basaltic rocks have the advantage of a low melt temperature and higher fluidity melt. In this paper, a mining waste of basaltic rock from the city of Campinas, São Paulo, was melted in laboratory scale, in an electric furnace at 1350°C, in high-alumina crucibles, to obtain the first series of basalt glass samples. Other series was obtained by melting of the raw material with addition of 0,5% wt. of Cr2O3 as a nucleating agent. The glasses were heat treated at the maximum crystallization temperature: 880oC during 5, 10, 20, 30, and 60 minutes and 820°C during 5, 20 and 60 minutes, respectively. The evolution of the crystalline phases was accompanied by density and X-ray diffraction (XRD) analyses. Vickers hardness and micro-abrasion resistance of the samples were also carried out, and the crystallized glasses were observed in a scanning electron microscope (SEM). The first series of glasses were also milled, until particle sizes ASTM 80 e ASTM 325, for the evaluation of their ability to crystallization as glass powder. They were characterized by XRD and SEM.
|
10 |
FUNDAMENTAL AND APPLIED RESEARCH ENABLED BY POLYMER NANOLAYER COEXTRUSION TECHNOLOGYJin, Yi 09 January 2007 (has links)
No description available.
|
Page generated in 0.0475 seconds